Исследовать на непрерывность функцию уравнений

Непрерывность функций с примерами решения и образцами выполнения

Непрерывность функции:

Непрерывные функции, точки разрыва и их классификация, действия над непрерывными функциями, свойства функций, непрерывных на сегменте.

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если:

  • функция определена в точке x₀ и в некоторой ее окрестности, содержащей эту точку;
  • функция имеет предел при х → x₀;
  • предел функции при х → x₀ равен значению функции в точке x₀:
    (10.1)

Если в точке x₀ функция непрерывна, то точка x₀ называется точкой непрерывности функции.

Пример:

Исследовать на непрерывность функцию в точке х = 1.

Решение:

Чтобы доказать, что функция непрерывна в точке х = 1, необходимо проверить выполнение трех следующих условий (определение непрерывности):

  • функция определена в точке х = 1 ⇒ f(1) = e;
  • существует ;
  • этот предел равен значению функции в точке х = 1 :

Таким образом, доказано, что функция непрерывна в точке х = 1.

Замечание:

Формулу (10.1) можно записать в виде
(10.2)
так как . Это значит, что при нахождении предела непрерывной функции можно переходить к пределу под знаком функции.

Введем понятие непрерывности функции в точке х₀ справа и слева.
Если, существует f(x) = f(x₀), то функция называется непрерывной в точке x₀ слева. Аналогично определяется непрерывность функции справа.

Так как ∆x = x-x₀, a ∆y = f(x)-(x₀), то условие (10.1) равносильно следующему:

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции
(10.3)

Пример:

Показать, что функция у = х³ непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y.

Используя теоремы о пределе суммы и произведения функции, получим
(3x²∆x 4- 3x∆x² + ∆x³) = 0.

Следовательно, функция у = х³ непрерывна при — ∞ Точки разрыва функции и их классификация

Определение:

Точка х₀ называется точкой разрыва функции у = f(x), если она принадлежит области определения функции или ее границе и не является точкой непрерывности.

Так, например, функция (рис. 89) терпит разрыв при х = 1. Эта функция не определена в точке х = 1, и не существует предела функции в этой точке.

Рис. 89. График функции

Определение:

Точка разрыва x₀ функции у = f(x) называется точкой устранимого разрыва, если существуют оба односторонних предела в точке x₀ и они равны, т. е.

Пример:

Исследовать на непрерывность функцию

Решение:

В точке x=-1 функция не определена, так как, выполнив подстановку, получаем неопределенность . В других точках дробь можно сократить на (1 + х), так как в них 1 + х ≠ 0. Легко видеть, что односторонние пределы слева и справа в точке х = — 1 равны между собой и их можно вычислить:

Таким образом, при x = -1 данная функция имеет устранимый разрыв.
Он будет устранен, если положить, что при x = -1 ⇒ у == 3.

Определение:

Если в точке x₀ односторонние пределы слева и справа существуют, но не равны, точка x₀ называется точкой разрыва I рода.

Пример:

Исследовать на непрерывность функцию
(рис. 90).

Рис. 90. График функции

Решение: Вычислим односторонние пределы функции в точке ее разрыва х = 4.

Предел слева —.
Предел справа — .
Пределы слева и справа существуют, но не равны, следовательно, точка x = 4 для данной функции — точка разрыва I рода (точка скачка).

Определение:

Точки разрыва, не являющиеся точками разрыва I рода, называются точками разрыва II рода.

В точках разрыва II рода не существует хотя бы один из односторонних пределов. Функция , представленная на рис. 89, не имеет ни левого, ни правого конечного предела в точке х = 1. Следовательно, для данной функции x = 1 является точкой разрыва II рода.

Действия над непрерывными функциями

Теорема:

Непрерывность суммы, произведения и частного непрерывных функций. Если функции ϕ(x) и ψ(x) непрерывны в точке Хо, то их сумма и произведение также непрерывны в точке x₀. Если, кроме того, знаменатель в рассматриваемой точке не равен нулю, то частное непрерывных функций есть функция непрерывная.

Докажем непрерывность произведения.

Дано: непрерывность функций в точке x₀:
и

Доказать, что f(x) — ϕ(x) ∙ ψ(x) есть функция непрерывная в точке x₀, т. е. f(x) — f(x₀).

Доказательство:
f(x) = [ϕ(x) ∙ ψ(x)] = ϕ(x) ∙ ψ(x) = ϕ(x₀) ∙ ψ(x₀) = f(x₀).

Можно строго доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Например, степенная у = xⁿ, показательная у = , тригонометрические у = sin х и у = cos х функции непрерывны на всей числовой оси (х ∈ R), логарифмическая функция непрерывна при х > 0, а тригонометрическая у = tg x непрерывна в каждом из интервалов и терпит разрыв II рода в точках (k = 0; ±1; ±2;…).

Теорема:

Непрерывность сложной функции. Если функция и = ϕ(x) непрерывна в точке x₀, а функция у = f(u) непрерывна в точке и₀ = ϕ(x₀), то сложная функция у = f [ϕ(x)] непрерывна в точке x₀.

В заключение этого раздела рассмотрим два предела, которые нам понадобятся в дальнейшем.

Пример:

Вычислить

Решение:

Заметим, что при х → 0 числитель и знаменатель одновременно стремятся к нулю, т.е. имеет место неопределенность вида . Выполним преобразование

Так как данная логарифмическая функция непрерывна в окрестности точки х = 0, то можно перейти к пределу под знаком функции ( f(x)= f (x)).

но — второй замечательный предел.

Следовательно,
(10.4)

В частности, при а = е
(10.5)

Таким образом, у = ln( 1 + х) и у = х — эквивалентные бесконечно малые функции при х → 0.

Пример:

Вычислить

Решение:

Здесь мы имеем дело с неопределенностью вида . Для нахождения предела сделаем замену переменной, положив — 1 = t. Тогда . При х → 0 также и t → 0.

Так как на основании результата, полученного в предыдущем примере, то
(10.6)

В частности, если а = е, имеем

т.е. у = — 1 и y = x — эквивалентные бесконечно малые функции при х → 0.

Свойства функций, непрерывных на сегменте

Определение:

Функция у = f(x) непрерывна на сегменте [а, b], если она непрерывна во всех внутренних точках Этого сегмента, а на концах сегмента (в точках a и b) непрерывна соответственно справа и слева.

Теорема:

Если функция у = f(x) непрерывна на сегменте [а, b], то она достигает на этом сегменте своего наибольшего и(или) наименьшего значения.

Простым доказательством этой теоремы, является геометрическая иллюстрация функции у = f(x) на рисунке 91. Непрерывная на сегменте [α, b] функция достигает наименьшего своего значения в точке х = x₁= а, а наибольшего значения в точке х₂.

Рис. 91. Геометрическая иллюстрация условий теоремы 10.3

Следствие:

Если функция у = f(x) непрерывна на сегменте [a, b], то она ограничена на этом сегменте.

Действительно, если по теореме 10.3 функция достигает на сегменте наибольшего M и наименьшего т значений, то имеет место неравенство m ≤ f(x) ≤ M для всех значений функции на рассматриваемом сегменте. Т. е. |f(x)| ≤ M и, следовательно, функция у = f(x) ограничена на сегменте [а, b].

Теорема:

Теорема Больцано-Коши. Если функция у = f(x) непрерывна на сегменте [а, b] и на ее концах принимает значения разных знаков, то внутри этого сегмента найдется, по крайней мере, одна тонка С, в которой функция равна нулю.

Геометрический смысл теоремы заключается в следующем: если точки графика функции у = f(x), соответствующие концам сегмента [a, b], лежат по разные стороны от оси ОХ, то этот график хотя бы в одной точке сегмента пересекает ось OX. На данном рисунке 92 это три точки x₁, x₂, x₃.

Рис. 92. Геометрическая иллюстрация условий теоремы 10.4

Теорема:

О промежуточных значениях функции. Если функция у = f(x) непрерывна на сегменте [α, b] и f(α) = A и f(b) = В, то для любого числа С, заключенного между A и B, найдется внутри этого сегмента такая точка с, что f(c) = С.

Из графика на рисунке 93 видно, что непрерывная функция, переходя от одного значения к другому, обязательно проходит через все промежуточные значения.

Рис. 93. Геометрическая иллюстрация условий теоремы 10.5

Теорема:

О непрерывности обратной функции.) Если функция у = f(x) непрерывна на сегменте [а, b] в возрастает (убывает) на этом сегменте, то обратная функция х = f⁻¹(y) на соответствующем сегменте оси OY существует и является также непрерывной возрастающей (убывающей) функцией.

Эту теорему мы принимаем без доказательства.

Решение на тему: Непрерывная функция

Пример:

Показать, что функция у = 4x² непрерывна в точке х = 2.

Решение:

Для этого необходимо показать, что в точке х = 2 выполняется все три условия непрерывности функции:

1) функция у = 4х² определена в точке х = 2 ⇒ f(2) = 16;
2) существует f(x) = 4x²= 16;
3) этот предел равен значению функции в точке х = 2

f(x) = f(2) = 16.

Пример:

Показать, что функция у = sin x непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y, используя формулы тригонометрических тождеств

Так как то при любом х имеем

Следовательно, функция у = sin x непрерывна при -∞ Рис. 94. График функции примера 10.3

Эта функция (рис. 94) определена во всех точках сегмента [0,4] и ее значение при х = 3 ⇒ у = 2. Функция терпит разрыв, так как она не имеет предела при х → 3 :

Следовательно, точка х = 3, точка разрыва первого рода. При этом в граничных точках исследуемого сегмента [0,4], функция f(x) непрерывна справа (х = 0) и непрерывна слева (х = 4).

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 5 функция не определена, т.к., выполнив подстановку, получаем неопределенность вида 0/0. Легко доказать, что

Следовательно, точка х = 5 точка устранимого разрыва.

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 0 функция (рис. 95) терпит разрыв, так как она не определена в этой точке. Пределы функции слева и справа от точки х = 0 равны ∞. Следовательно, точка х = 0 для данной функции является точкой разрыва второго

Пример:

Исследовать на непрерывность функцию

Решение:

В точке х = 0 функция терпит разрыв 1-го рода, так как односторонние пределы существуют в этой точке, но не равны:
предел слева
предел справа

Рис. 95. График функции

Пример:

Исследовать на непрерывность функцию .

Решение:

Функция определена для всех значений х, кроме x = 0.B этой точке она имеет разрыв. Точка х = 0 есть точка разрыва II рода, так как при х → 0 как справа, так и слева, функция , колеблясь между -1 и 1, не приближается ни к какому числовому значению. График ее приведен на рис. 96.

Рис. 96. График функции

Пример:

Исследовать на непрерывность функцию

Решение:

Функция не определена в точке х = 0. Точка х = 0 является точкой разрыва I рода, так как при х → 0 существуют пределы справа и слева:

Если доопределить функцию в точке х = 0, полагая f(0) = 1, то получим уже непрерывную функцию, определенную так:
f(х) =, если х ≠ 0; f(0) = 1.

Доопределив функцию в точке х = 0, мы устранили разрыв.

Непрерывность функций

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Непрерывность функций и точки разрыва с примерами решения

Содержание:

Непрерывность функций и точки разрыва

Непрерывность функции

Определение: Функция

  • — она определена в этой точке и ее некоторой -окрестности;
  • — существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.

— предел функции в точке равен значению функции в исследуемой точке, т.е.

Пример:

Найти область непрерывности функции

Решение:

Данная функция непрерывна так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.

Замечание: Всякая элементарная функция непрерывна в области своего определения.

Точки разрыва

Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.

Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.

Пример:

Доказать, что функция в точке имеет разрыв первого рода.

Решение:

Нарисуем график функции в окрестности нуля (Рис. 64): Рис. 64. График функции Область определения функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.

Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).

Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.

Пример:

Доказать, что функция имеет в точке устранимый разрыв.

Решение:

В точке функция имеет неопределенность поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы убеждаемся, что данная точка является точкой устранимого разрыва.

Определение: Все остальные точки разрыва называются точками разрыва II рода.

Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы

один из односторонних пределов равен т.е. в такой точке функция терпит бесконечный разрыв.

Пример:

Исследовать на непрерывность функцию

Решение:

Найдем область определения этой функции: т.е. точка

является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.

Пример:

Исследовать на непрерывность функцию

Решение:

Найдем область определения этой функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.

Операции над непрерывными функциями

Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.

Доказательство: Докажем приведенную теорему для суммы двух функций которые определены в некоторой -окрестности точки в которой лево- и правосторонние пределы равны между собой. Так как функции непрерывны в некоторой -окрестности точки то выполняются равенства: В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.

Теорема: Произведение непрерывных функций есть непрерывная функция.

Теорема: Частное двух непрерывных функций при условии, что во всех точках общей области определения функция , есть непрерывная функция.

Теорема: Сложная функция от непрерывных функций есть непрерывная функция.

Схема исследования функции на непрерывность

Исследование функции на непрерывность проводят по следующей схеме:

  • находят область определения функции; точки, в которых функция не определена, являются точками подозрительными на разрыв: если функция задана словесным образом, т.е. описывается разными формулами на разных интервалах, то точками подозрительными на разрыв являются точки, определяющие границы интервалов;
  • исследуют подозрительные на разрыв точки, для чего вычисляют лево- и правосторонние пределы; классифицируют точки разрыва;
  • при наличии точек разрыва строят график функции в малой -окрестности точки .

Пример:

Исследовать на непрерывность функцию

Решение:

Согласно схеме исследования функции на непрерывность имеем:

  • точка является точкой подозрительной на разрыв.
  • вычислим левосторонний и правосторонний пределы; так как пределы бесконечные, то точка является точкой разрыва второго рода;
  • построим график функции в небольшой окрестности точки разрыва (Рис. 65).

Рис. 65. Поведение графика функции в малой окрестности точки разрыва второго рода

Из рисунка видно, что график функции —неограниченно приближается к вертикальной прямой нигде не пересекая эту прямую.

Свойства непрерывных функций на отрезке (a; b)

Свойства непрерывных функций на отрезке .

Определение: Замкнутый интервал будем называть сегментом.

Приведем без доказательства свойства непрерывных функций на сегменте .

Теорема: Если функция непрерывна на сегменте , то она достигает своего наименьшего () и наибольшего () значения либо во внутренних точках сегмента, либо на его концах.

Пример:

Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).

Рис. 66. Графики функций, удовлетворяющих условиям теоремы.

Решение:

На графике а) функция достигает своего наименьшего и наибольшего значений на концах сегмента На графике б) функция достигает своего наименьшего и наибольшего значения во внутренних точках сегмента На графике в) функция достигает своего наименьшего значения на левом конце сегмента а наибольшего значения во внутренней точке сегмента

Тб. Если функция непрерывна на сегменте и достигает своего наименьшего () и наибольшего () значений, то для любого вещественного числа С, удовлетворяющего неравенству , найдется хотя бы одна точка такая, что .

Пример:

Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67).

Рис. 67. Графики функций, удовлетворяющих условиям Тб.

Теорема: Если функция непрерывна на сегменте и на его концах принимает значения разных знаков, то найдется хотя бы одна точка такая, что.

Пример:

Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).

Рис. 68. Графики функций, удовлетворяющих условиям теоремы.

На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Точки разрыва и их классификация
  • Дифференциальное исчисление
  • Исследование функций с помощью производных
  • Формула Тейлора и ее применение
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Замечательные пределы

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Непрерывность функции в точке, разрывы первого и второго рода

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Непрерывность функции в точке

Функция f ( x ) является непрерывной в точке x 0 , если предел слева равен пределу справа и совпадает со значением функции в точке x 0 , т.е.: lim x → x 0 — 0 f ( x ) = lim x → x 0 + 0 f ( x ) = f ( x 0 )

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Дана функция f ( x ) = 1 6 ( x — 8 ) 2 — 8 . Необходимо доказать ее непрерывность в точке х 0 = 2 .

Решение

В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов х n , сводящуюся к х 0 = 2 · ( х n 2 ) . Например, такой последовательностью может быть:

— 2 , 0 , 1 , 1 1 2 , 1 3 4 , 1 7 8 , 1 15 16 , . . . , 1 1023 1024 , . . . → 2

Соответствующая последовательность значений функций выглядит так:

f ( — 2 ) ; f ( 0 ) ; f ( 1 ) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 . 667 ; 2 . 667 ; 0 . 167 ; — 0 . 958 ; — 1 . 489 ; — 1 . 747 ; — 1 . 874 ; . . . ; — 1 . 998 ; . . . → — 2

на чертеже они обозначены зеленым цветом.

Достаточно очевидно, что такая последовательность сводится к — 2 , значит lim x → 2 — 0 1 6 ( x — 8 ) 2 — 8 = — 2 .

Определим существование предела справа: используем последовательность аргументов х n , сводящуюся к х 0 = 2 ( х n > 2 ) . Например, такой последовательностью может быть:

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Соответствующая последовательность функций:

f ( 6 ) ; f ( 4 ) ; f ( 3 ) ; f 2 1 2 ; f 2 1 4 ; f 2 1 8 ; f 2 1 16 ; . . . ; f 2 1 1024 ; . . . = = — 7 . 333 ; — 5 . 333 ; — 3 . 833 ; — 2 . 958 ; — 2 . 489 ; — 2 . 247 ; — 2 . 247 ; — 2 . 124 ; . . . ; — 2 . 001 ; . . . → — 2

на рисунке обозначена синим цветом.

И эта последовательность сводится к — 2 , тогда lim x → 2 + 0 1 6 ( x — 8 ) 2 — 8 = — 2 .

Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f ( x ) = 1 6 x — 8 2 — 8 в точке х 0 = 2 , при этом lim x → 2 1 6 ( x — 8 ) 2 — 8 = — 2 .

После вычисления значения функции в заданной точке очевидно выполнение равенства:

lim x → 2 — 0 f ( x ) = lim x → 2 + 0 f ( x ) = f ( 2 ) = 1 6 ( 2 — 8 ) 2 — 8 = — 2 что свидетельствует о непрерывности заданной функции в заданной точке.

Ответ: Непрерывность функции f ( x ) = 1 6 ( x — 8 ) 2 — 8 в заданной части доказано.

Устранимый разрыв первого рода

Функция имеет устранимый разрыв первого рода в точке х 0 , когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:

lim x → x 0 — 0 f ( x ) = lim x → x 0 + 0 f ( x ) ≠ f ( x 0 )

Задана функция f ( x ) = x 2 — 25 x — 5 . Необходимо определить точки ее разрыва и определить их тип.

Решение

Сначала обозначим область определения функции: D ( f ( x ) ) ⇔ D x 2 — 25 x — 5 ⇔ x — 5 ≠ 0 ⇔ x ∈ ( — ∞ ; 5 ) ∪ ( 5 ; + ∞ )

В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х 0 = 5 . Исследуем функцию на непрерывность в этой точке.

Выражение x 2 — 25 x — 5 упростим: x 2 — 25 x — 5 = ( x — 5 ) ( x + 5 ) x — 5 = x + 5 .

Определим пределы справа и слева. Поскольку функция g ( x ) = x + 5 является непрерывной при любом действительном x , тогда:

lim x → 5 — 0 ( x + 5 ) = 5 + 5 = 10 lim x → 5 + 0 ( x + 5 ) = 5 + 5 = 10

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Функция имеет неустранимый разрыв первого рода в точке х 0 , когда пределы справа и слева не являются равными, т.е.: lim x → x 0 — 0 f ( x ) ≠ lim x → x 0 + 0 f ( x ) . Точка х 0 здесь – точка скачка функции.

Задана кусочно-непрерывная функция f ( x ) = x + 4 , x — 1 , x 2 + 2 , — 1 ≤ x 1 2 x , x ≥ 1 . Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.

Решение

Разрывы данной функции могут быть лишь в точке х 0 = — 1 или в точке х 0 = 1 .

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

  • слева от точки х 0 = — 1 заданная функция есть f ( x ) = x + 4 , тогда в силу непрерывности линейной функции: lim x → — 1 — 0 f ( x ) = lim x → — 1 — 0 ( x + 4 ) = — 1 + 4 = 3 ;
  • непосредственно в точке х 0 = — 1 функция принимает вид: f ( x ) = x 2 + 2 , тогда: f ( — 1 ) = ( — 1 ) 2 + 2 = 3 ;
  • на промежутке ( — 1 ; 1 ) заданная функция есть: f ( x ) = x 2 + 2 . Опираясь на свойство непрерывности квадратичной функции, имеем: lim x → — 1 + 0 f ( x ) = lim x → — 1 + 0 ( x 2 + 2 ) = ( — 1 ) 2 + 2 = 3 lim x → 1 — 0 f ( x ) = lim x → 1 — 0 ( x 2 + 2 ) = ( 1 ) 2 + 2 = 3
  • в точке х 0 = — 1 функция имеет вид: f ( x ) = 2 x и f ( 1 ) = 2 · 1 = 2 .
  • справа от точки х 0 заданная функция есть f ( x ) = 2 x . В силу непрерывности линейной функции: lim x → 1 + 0 f ( x ) = lim x → 1 + 0 ( 2 x ) = 2 · 1 = 2

Ответ: в конечном счете мы получили:

  • lim x → — 1 — 0 f ( x ) = lim x → — 1 + 0 f ( x ) = f ( — 1 ) = 3 — это означает, что в точке х 0 = — 1 заданная кусочная функция непрерывна;
  • lim x → — 1 — 0 f ( x ) = 3 , lim x → 1 + 0 f ( x ) = 2 — таким образом, в точке х 0 = 1 определён неустранимый разрыв первого рода (скачок).

Нам остается только подготовить чертеж данного задания.

Разрыв второго рода (бесконечный разрыв)

Функция имеет разрыв второго рода в точке х 0 , когда какой-либо из пределов слева lim x → x 0 — 0 f ( x ) или справа lim x → x 0 + 0 f ( x ) не существует или бесконечен.

Задана функция f ( x ) = 1 x . Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.

Решение

Запишем область определения функции: x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) .

Найдем пределы справа и слева от точки х 0 = 0 .

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

— 8 ; — 4 ; — 2 ; — 1 ; — 1 2 ; — 1 4 ; . . . ; — 1 1024 ; . . .

Ей соответствует последовательность значений функции:

f ( — 8 ) ; f ( — 4 ) ; f ( — 2 ) ; f ( — 1 ) ; f — 1 2 ; f — 1 4 ; . . . ; f — 1 1024 ; . . . = = — 1 8 ; — 1 4 ; — 1 2 ; — 1 ; — 2 ; — 4 ; . . . ; — 1024 ; . . .

Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда lim x → 0 — 0 f ( x ) = lim x → 0 — 0 1 x = — ∞ .

Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х 0 справа. К примеру: 8 ; 4 ; 2 ; 1 ; 1 2 ; 1 4 ; . . . ; 1 1024 ; . . . , и ей соответствует последовательность значений функции:

f ( 8 ) ; f ( 4 ) ; f ( 2 ) ; f ( 1 ) ; f 1 2 ; f 1 4 ; . . . ; f 1 1024 ; . . . = = 1 8 ; 1 4 ; 1 2 ; 1 ; 2 ; 4 ; . . . ; 1024 ; . . .

Эта последовательность — бесконечно большая положительная, а значит lim x → 0 + 0 f ( x ) = lim x → 0 + 0 1 x = + ∞ .

Ответ: точка х 0 = 0 — точка разрыва функции второго рода.


источники:

http://www.evkova.org/nepreryivnost-funktsij-i-tochki-razryiva

http://zaochnik.com/spravochnik/matematika/funktsii/nepreryvnost-funktsii-v-tochke/