Исследовать поведение популяции описываемого уравнением

Модели роста популяций: модель Ферхюльста (логистический рост), модель с наименьшей критической численностью.

    Геннадий Букреев 4 лет назад Просмотров:

1 СЕМИНАР Модели роста популяций: модель Ферхюльста (логистический рост), модель с наименьшей критической численностью. ЛОГИСТИЧЕСКИЙ РОСТ (УРАВНЕНИЕ ФЕРХЮЛЬСТА) Частым явлением в природе является ограниченность ресурсов (пищевых, территориальных) и, как следствие, внутривидовая конкуренция. Как правило, если численность популяции очень мала, то конкуренция не влияет на удельную скорость роста популяции r. Когда же численность возрастает и приближается к некоторому предельному значению, удельная скорость роста падает до нуля. Предельное значение называется емкостью экологической ниши популяции. Величина К соответствует такой численности популяции, при которой фактическая скорость воспроизводства в результате конкуренции настолько снижена, что популяция в целом может только восстанавливать в каждом поколении свою численность. В этот момент количество родившихся особей уравновешивается количеством погибших. Предположим, что зависимость удельной скорости роста популяции от ее численности линейна (рис. ). Получим уравнение dx() r = r x() (.) d x или dx() r = x() r x(). (. * ) d

2 Семинар. Модели роста популяций Рис. Простейшая линейная зависимость, иллюстрирующая снижение удельной скорости роста в связи с увеличением плотности популяции. Уравнение (. * ) получило название «уравнение логистического роста» или «уравнение Ферхюльста». Слагаемые в правой части уравнения (. * ) можно интерпретировать следующим образом. Удельная (средняя) скорость рождаемости есть некоторая положительная постоянная, не зависящая от времени и размера популяции x() (положительное слагаемое r). А удельная (средняя) смертность пропорциональна размеру популяции (отрицательное слагаемое x() r ). Увеличение смертности с ростом популяции может происходить благодаря эффектам скученности или усиливающейся конкуренции за доступные пищевые ресурсы. dx r Раскроем скобки в уравнении (. * ): = x r x. d Первое слагаемое будет нам давать информацию о неограниченном росте популяции. Второе о влиянии внутривидовой конкуренции (отрицательном влиянии взаи-

3 Учебное пособие «Математические модели в биологии» r модействия двух особей одного вида: x ) на скорость роста популяции. Исследуем уравнение логистического роста (уравнение Ферхюльста,. * ). Сначала находим стационарные значения численности популяции: r r x r x = x = или r x =. Получаем два стационарных значения x = и, x =. Будут ли эти стационарные состояния устойчивыми? Воспользуемся аналитическим методом Ляпунова. Согласно ему для определения устойчивости необходимо определить знак производной функции f ( x ), стоящей в правой части дифференциального уравнения, в точках x (подробный вывод см. в разделе Семинар ). Производная функция равна: r = = r f ( x) x r x r x Подставляем стационарные значения: r f ( x ) = r x = r. Показатель удельной скорости x= x = роста r есть положительная константа ( r > ), что означает неустойчивость стационарного состояния x =. Производная функции в точке x :. r f ( x) = r x = r. x= x = Величина r отрицательная, т.е. стационарное состояние x = является устойчивым.

4 Семинар. Модели роста популяций По какому закону будет изменяться во времени численность популяции x()? Для ответа на этот вопрос решим дифференциальное уравнение (.) методом разделения переменных. dx rd x ( x ) = (для сокращения записи вместо x() будем писать x, подразумевая, что численность x есть функция от времени); + dx = r d ; x ( x) ( ln ln( )) x x = r+ C (численность x есть положительная величина, поэтому при интегрировании знак модуля в выражении ln( x ) опускаем, C произвольная ‘ константа); x ln = r + C ; x x x x x = Ce r = Ce, C = e r. C ; Пусть в начальный момент времени численность равнялась x() = x. Определим величину константы C: x x = C. Получим окончательную формулу зависимости численности популяции от времени: x () x = x() x e r или r xe x () =. (.) r x + x e 3

5 Учебное пособие «Математические модели в биологии» Знак модуля можно опустить, поскольку величины x и x() всегда одного знака (см. дальнейшее исследование). Построим график полученной зависимости (.) в области положительных значений времени. В начальный момент времени имеем x() = x. При + численность популяции стремится к величине емкости экологической ниши: x e x x = = = = r lim x( ) lim lim + + r x x + xe + + x x r e x (так как lim = ). + r e На графике существование этого предела отражается в наличии горизонтальной асимптоты x() =. r Знаменатель функции x() равен x + xe. Если r начальное значение x , знаменатель в ноль не обращается. При x > знаменатель обращается в ноль, когда as = ln. Аргумент лога- x r x рифма x x данном случае меньше, поэтому значение as меньше нуля. Таким образом, в случае x > в области отрицательных значений будет иметь место вертикальная асимптота as = ln x r x. 4

6 Семинар. Модели роста популяций Теперь исследуем первую и вторую производную функции (.), чтобы определить, есть ли у кривой, задаваемой этой функцией, экстремумы или перегибы: x () ( ) r ( x + xe ) ( ) r ( ) rxe x + xe xe rxe r r r r r xe = r = = x + x e x + x e rx e x = r. Производная x () > в случае x производная x () функция x() монотонно убывает и асимптотически стремится к величине. r rxe ( x ) x () = = r ( x+ xe ) ( ) ( ) ( ) ( ) ( ) r r r r r xe x x + xe rxe x x + xe = = r ( x + x e ) r ( )( + ) r 4 ( ) r ( x + x e ) r r x e x x x e r = x + xe xe = ( ) = r rxe x 3 r ( x + xe ) r ( x xe ). 4 5

7 Учебное пособие «Математические модели в биологии» В случае x > вторая производная в ноль не обращается, функция x() перегибов не имеет. Рассмотрим случай x , т.е. x , то p 8 Семинар. Модели роста популяций растать, пока численность не достигнет значения, а затем начнет снижаться, стремясь к нулю. Если начальная численность популяции составляет более половины емкости экологической ниши, то размер популяции будет увеличиваться, стремясь к значению, а скорость ее роста будет неуклонно снижаться. Изменение характера развития популяции (переход от возрастания скорости роста к снижению в точке x () = ) про- изошло до того, как исследователь начал за ней наблюдать (т.е. до момента времени = ). Если же размер популяции в начальный момент времени больше предельно возможного значения, то численность популяции будет снижаться (рис..). x() x x x p p Рис. График решения логистического уравнения. 7

9 Учебное пособие «Математические модели в биологии» МОДЕЛЬ ПОПУЛЯЦИИ С НАИМЕНЬШЕЙ КРИТИЧЕСКОЙ ЧИСЛЕННОСТЬЮ В рассмотренной модели прирост численности популяции представлен линейным членом rx(). Строго говоря, это применимо лишь к тем видам, размножение которых происходит путем деления или самооплодотворения. Если же размножение предполагает скрещивание разнополых особей, то прирост будет тем выше, чем больше количество встреч между особями. Тогда для разнополой популяции прирост численности должен выражаться квадратичным членом rx (). При большой численности в популяции лимитирующим фактором становится количество половозрелых самок в популяции. Кроме того, важно учесть время, в течение которого может состояться оплодотворение. Если это время больше времени, в течение которого особь способна к размножению, то популяция вымирает. Уравнение, учитывающее фактор разнополости и количество самок, готовых к оплодотворению, имеет вид dx() β[ x()] = α. Учитывая смертность, пропорциональd β + τ x() cp Пусть Т среднее время между двумя последующими оплодотворениями, τ среднее время вынашивания плода, постоянное для каждого вида, cp среднее время, в течение которого может состояться оплодотворение: cp = T τ. Вероятность встречи, ведущей к оплодотворению, тем больше, чем больше соотношение cp T. Тогда коэффициент размножения для разнополых популяций r, можно представить в виде: cp cp r = α = α T + τ, где α коэффициент пропорциональности; cp величина, уменьшающаяся при возрастании плотности популяции: β = cons. Тогда, dx() cp x() x β β = α = α x = α x d + τ β x() + τ β + τx() cp cp β =, x() [ ( )] [ ( )] [ ( )]. 8

10 Семинар. Модели роста популяций ную численности популяции с коэффициентом γ, получаем уравнение: dx() [ x()] x() d = β α γ β + τx(). (.3) Уравнение (.3) имеет два стационарных значения: x = и x = γβ L αβ γτ = (значения параметров модели задаются такими, чтобы величина L была положительной). Исследуем устойчивость стационарных состояний графическим методом. Для этого необходимо определить знак β x x функции f( x) = α γx= (( αβ γτ) x γβ). Знаменатель функции положителен при положительных значе- β + τx β + τx ниях x, меняет знак при прохождении через значение β x =. Числитель меняет знак при прохождении через τ стационарные точки x,. В результате имеем f( x ) > при dx x > x = L, в области 11 Учебное пособие «Математические модели в биологии» численность (плотность). Она индивидуальна для каждого вида. График зависимости численности популяции, описываемой моделью (.3) от времени представлен на рис..3 б. fx ( )= dx d а x() б L x = x =L x Рис..3. Модель популяции с наименьшей критической численностью. Зависимость скорости роста популяции от ее размера (а) и динамика численности популяции (б). Учтем в модели (.3) важный фактор внутривидовой конкуренции. В этом случае получим общий закон, описывающий динамику разнополой популяции в условии ограничения ресурсов: dx() [ x()] x x d = β α γ δ β + τx() () [ ()]. Уравнение имеет три стационарных значения: (.4) βx x = α γx δx = ( αβx γ( β+ τx) δx( β+ τx) ) = β+ τx β+ τx x = ( δτ x + x( αβ γτ βδ ) γβ ). β+ τx Это нулевое решение x =, а также два значения, обращающих в ноль квадратный трехчлен: x ˆ = L и x ˆ 3 =. Значения численности ˆL и ˆ являются критическими: 3

12 Семинар. Модели роста популяций x ˆ = L минимально возможная численность, x ˆ 3 = максимально возможная (параметры модели α, β, τ, γ, δ выбирают такими, чтобы величины ˆL и ˆ были положительными). Устойчивость стационарных состояний проверим, аналогично предыдущему случаю, графическим dx x методом. Функция f ( x) = ( x Lˆ)( x ˆ) d = β + τx модели (.4) в положительной области значений переменной x меняет знак с «плюса» на «минус» при переходе через x = (это стационарное значение устойчиво), затем с «минуса» на «плюс» в точке x ˆ = L (неустойчивое стационарное значение) и, наконец, опять с «плюса» на «минус» в точке x ˆ 3 = (устойчивое стационарное значение) (рис..4 а). График зависимости численности популяции, описываемой моделью (.4) от времени представлен на рис..4 б. fx ( )= dx d а ˆ x() б ˆ L ˆ x = x =L x 3 = x ˆ Рис..4. Модель популяции с нижней и верхней критическими границами численности. Зависимость скорости роста популяции от ее размера (а) и динамика численности популяции (б). 3

13 Учебное пособие «Математические модели в биологии» ЗАДАЧИ К СЕМИНАРУ.. График функции, задающей скорость изменения численности микробной популяции, имеет вид: а б ) Какое выражение будет описывать динамику роста культуры, если в начальный момент времени ее размер равен 5. ) Какова будет численность культуры через час, если ее размер в начальный момент времени равна 7. Рост популяции описывается уравнением Ферхюльста. Емкость экологической ниши для нее равна. Постройте график динамики численности популяции, если известно, что начальная численность равна: а) ; б) 7; в). Скорость роста r равна.5. Укажите координаты точки перегиба и асимптоты..3. Рост популяции описывается уравнением, учитывающим нижнюю границу численности и внутривидовую dx x конкуренцию: = dx px. Определите величины d + x верхней и нижней границы численности, если известно, что коэффициент смертности равен., а внутривидовой конкуренции равен.4. Постройте графики динамики численности популяций для начальных значений меньших нижней критической границы, лежащих в пределах между нижней и верхней границей, и превышающих верхнюю границу. 3

14 СЕМИНАР 3 Дискретные модели популяций с неперекрывающимися поколениями. Дискретное логистическое уравнение. Лестница Ламерея. Модели, основанные на аппарате дифференциальных уравнений, применимы для описания динамики достаточно многочисленных популяций (например, микробных), у которых процессы рождения и гибели особей можно считать непрерывными, или у которых нет ярко выраженной сезонности периодов размножения. Если же мы имеем дело с организмами, для которых сезонность важная характеристика их жизненного цикла, то для описания динамики популяций таких видов более адекватным является аппарат конечно-разностных уравнений. Пусть численность некоторого вида в начальный момент времени равна N, по окончании одного периода времени N, по окончании двух N и.т.д. Развитие популяции во времени тогда описывается последовательностью чисел N, N, N, N, N +,. Разностным уравнением называется уравнение, которое связывает между собой значения N при различных значениях индекса. В общем виде численность популяции в определенный период времени зависит от численности на определенном предшествующем отрезке времени. В этом случае разностное уравнение имеет вид (. ) N = F N N N. (3.) n 33

15 Учебное пособие «Математические модели в биологии» + Параметры функции F в общем случае могут зависеть от конкретного периода времени. В простейшем случае, параметры среды обитания остаются неизменными, и мы приходим к уравнению с постоянными коэффициентами в правой части уравнения. Рассмотрим простую модель роста популяции, когда скорость роста в любой период времени пропорциональна размеру популяции в начале этого периода. Пусть N размер популяции в конце -го периода времени. Тогда величина N+ N выражает прирост популяции за следующий период времени, т.е. скорость роста, или рост в единицу времени, на ( + ) -м интервале времени. Эта величина должна быть пропорциональна численности N. Пусть коэффициент пропорциональности есть некоторая константа r, тогда получим разностное уравнение: N N = + rn или N+ = N( r+ ). Заметим, что это уравнение можно получить, исходя из исследованного ранее дифференциального уравнения модели экспоненциального роста (см. Семинар ) dn = rn. Скорость dn есть отношение приращения численности к приращению времени (только в отличие от не- d d прерывного случая приращение не является бесконечно Δ N N+ N N+ N малой величиной): = =. Приходим к Δ ( + ) дискретному аналогу уравнения экспоненциального роста: N + N = rn или N = ( r+ ) N, где r коэффициент вос- производства популяции. В рассмотренном примере численность популяции в конце каждого периода времени зависит лишь от ее величины по окончании предыдущего периода и не зависит от более ранних значений. В общем виде, подобный вид взаимосвязи (каждое значение в последовательности за- 34

16 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея висит только от значения на предыдущем шаге) можно описать формулой (сравните с формулой (3.)): N = или N F( N ) F( N ) =. (3.). + С помощью уравнения вида (3.) можно описывать популяции с неперекрывающимися поколениями. Например, для многих видов насекомых характерна непродолжительная жизнь взрослых особей. Взрослые особи откладывают яйца и погибают. К моменту выхода нового поколения, предыдущее поколение прекращает свое существование. К разностным уравнениям применимы понятия, используемые в теории дифференциальных уравнений. Решением (траекторией) дискретного уравнения называется любая последовательность значений < N >( =. ), удовлетворяющая данному дискретному уравнению при каждом значении времени, на котором уравнение определено. Различным начальным условиям соответствуют разные решения. Устойчивость решений определяется аналогично устойчивости решения дифференциального уравнения. * Равновесием называют решение вида N = cons = N, удовлетворяющее соотношению N = F( N ). (3.3) * * Устойчивость точки равновесия так же можно определить по методу Ляпунова: если при достаточно малом начальном отклонении от положения равновесия система никогда не уходит от положения равновесия, то такое положение равновесия называют устойчивым, оно соответствует устойчивому стационарному режиму функционирования системы. 35

17 Учебное пособие «Математические модели в биологии» Как и в случае с дифференциальным уравнением, для исследования устойчивости решения дискретного уравнения применим линейный анализ. * Положим N = N + x, где x отклонение от положения равновесия. Линеаризуем уравнение (3.), разлагая правую часть дискретного уравнения в ряд по степеням x в окрестности положения равновесия: df N = N + x = F N + x + o( x ). ( ) * * + + dn * N = N Учитывая определение равновесия (3.3) и отбрасывая члены порядка x и выше, получаем закон, по которому будет развиваться заданное отклонение: x + df = x. (3.4) dn * N = N Соотношение (3.4) между величинами отклонения от точки равновесия x и x + представляет собой геометрическую df прогрессию, где знаменатель прогрессии. Из dn * N = N условий сходимости геометрической прогрессии следует, что x при, если df dn * N = N , то заданное отклонение бу- 36

18 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея дет неограниченно расти: x при, и в этом случае положение равновесия будет неустойчивым. Случаи df dn * N = N = или требуют дополнительных исследований. df dn * N = N = Зная величину знаменателя геометрической прогрессии (3.4), можно сделать выводы о характере поведения траектории дискретного уравнения вблизи положения равновесия. Так, при положительных значениях знаменателя, все члены последовательности будут иметь оди- df наковый знак. Если монотонное удаление от него. При отрицательных значениях знаменателя, члены геометрической прогрессии становятся знакочередующимися. Если df 19 Учебное пособие «Математические модели в биологии» dn d ДИСКРЕТНОЕ ЛОГИСТИЧЕСКОЕ УРАВНЕНИЕ Формальная замена бесконечно малых приращений в дифференциальном уравнении логистического роста Δ N N N N N = = Δ ( + ) + + на Δ N N N rn N + = = Δ или дает следующий результат: N N+ = N + r. (3.5) N ( + r) Однако множитель + r при N > r становится отрицательным, уравнение (3.5) приводит к отрицательным значениям численности, что является с биологической точки зрения некорректным. Заметим, что в дифференциальном уравнении такого рода проблема отсутствует: множитель правой части N становится отрицательным при N >, но это дает отрицательную скорость размножения популяции (снижение размера популяции), а не отрицательную численность. Таким образом, необходимо модифицировать множитель правой части уравнения (3.5), сохранив следующие свойства: при малых значениях численности популяция растет и скорость роста не зависит от размера популяции; с течением времени численность популяции увеличивается, стремясь * к равновесному значению N =, а скорость роста стремится к нулю, оставаясь положительной. Таким свойст- r вом обладает выражение. Итак, получаем дискретный аналог логистического уравнения: e N 38

20 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея N r N N e + =. (3.6) Проведем исследование уравнения (3.6). Найдем положение равновесия: * * * N N e r N * * * * N = F( N ), т.е. =. Тогда N =, N Исследуем их устойчивость. В соответствии с аналитическим методом определения устойчивости необходимо определить знак и сравнить с величину производной правой части уравнения в точках равновесия. Производная функции равна: df dn N r = N e = N N r r r = e N e + = Nr N r = e. Подставляем значение df dn N = * N = : r r r = e = e >. =. Таким образом, при r >, состояние равновесия * N = неустойчиво, поведение траекторий в его окрестности монотонно. Подставляем значение df dn N = * N = : r r = e = r. 39

21 Учебное пособие «Математические модели в биологии» Условие df dn * N = N решение уравнения (3.6) неустойчиво. При этом, если r >, то решение немонотонно. Исследование модели логистического роста показало, что, в отличие от решения дифференциального уравнения, траектории, задаваемые его дискретным аналогом, при определенных значениях скорости прироста r обладают цикличностью, а также могут описывать различные хаотические режимы (так называемые вспышки численности). За ходом решения дискретного логистического уравнения можно проследить с помощью диаграммы (или лестницы) Ламерея. 4

22 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея ЛЕСТНИЦА ЛАМЕРЕЯ На рис. 3.. представлена зависимость численности популяции N + от численности на предыдущем шаге N, задаваемая логистическим уравнением (3.6): N r e ( ) N = N = + F N. Рис. 3.. График функции, задающей дискретное уравнение логистического роста (3.6). Пояснения в тексте. 4

23 Учебное пособие «Математические модели в биологии» N + Пунктирной линией представлена биссектриса = N. В точках пересечения графика функции F( N ) с биссектрисой выполняется равенство: N = N = + F( N), т.е. выполняется определение точки равновесия. Таким образом, точки пересечения графиков N (с координата- * ми (,)) и N (с координатами (К,К)) являются точками равновесия (см. предыдущий подраздел). * ШАГ. Пусть известна некоторая начальная численность популяции N. Какую последовательность следующих значений численностей < N, N, N 3. >задает логистическое уравнение? Значение N определяется равенством N = F( N), т.е. пара значений ( N, N ) является координатами соответствующей точки на графике функции F( N ) (рис. 3. а). Отложим на координатной плоскости ( N, ) точки (, N ) и (, N ) (рис. 3. б). ШАГ. Следующее значение численности N определяется из соотношения N = F( N) (рис. 3. в). На графике, величина N из значения функции должна стать значением аргумента: проводим перпендикуляр от точки (, N ) до пересечения с биссектрисой, затем опускаем перпендикуляр до оси абсцисс N. ШАГ 3. Повторяем шаг. Теперь наша начальная точка точка N, значение численности N есть ордината точки на графике функции F( N ): ( N, F( N ) ) (рис а, б). 4

24 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея ШАГ 4. Повторяем шаг. Значение N переносим на ось абсцисс с помощью отражения от биссектрисы (рис. 3.3 в). ШАГ 5. Повторяем шаг. Следующее значение численности N 3 определяем как ординату точки на графике функции F: (, ( )) N F N (рис. 3.4 а, б). Продолжая повторять шаги построения лестницы Ламерея, получим последовательность значений численности популяции в разные моменты времени. В рассмотренном примере мы получили, что со временем численность в виде затухающих колебаний сходится к равновесному значению (рис , 3.7 в). Характер последовательности значений численности популяции, полученной при помощи лестницы Ламерея, может быть монотонным, циклическим, колебательным и хаотическим. Каким он будет, в каждом конкретном случае определяется формой кривой F( N ). В свою очередь, форму кривой определяют значения параметров функции F( N ) (скорость прироста r и емкость экологической ниши ). 43

25 Учебное пособие «Математические модели в биологии» а а б б в в Рис. 3.. Построение лестницы Ламерея. Рис Построение лестницы Ламерея. Продолжение. 44

26 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея а а б б в в Рис Построение лестницы Ламерея. Продолжение. Рис Построение лестницы Ламерея. Продолжение. 45

27 Учебное пособие «Математические модели в биологии» а а б б в в Рис Построение лестницы Ламерея. Продолжение. Рис Построение лестницы Ламерея. Окончание. 46

28 Семинар 3. Дискретные модели роста популяций. Лестница Ламерея ЗАДАЧИ К СЕМИНАРУ С помощью диаграммы Ламерея построить график динамики численности популяции, если зависимость N+ = f( N) имеет вид: а б в г 47

Исследовать поведение популяции описываемого уравнением

Теория : Нелимитированный рост численности популяции при постоянных условиях среды описывается дифференциальным уравнением Мальтуса (Ризниченко, Рубин, 1993) :

,(1.1)
где x – численность (плотность) популяции, t – время, r – мальтузианский параметр, имеющий смысл удельной скорости роста. Размерность мальтузианского параметра – [время -1 ]. Решением данного уравнения является выражение:
,(1.2)

где x 0 – начальная численность популяции.

Условия : С целью изучения динамики эвтрификации водоемов, загрязненных минеральными удобрениями, в пяти прудах моделировали размножение синезеленых водорослей в нелимитированных условиях. Полученые данные об изменении численности популяции водорослей в каждом пруду представлены в таблице 1.1.

Таблица 1.1

Время, час

t

Титр клеток водорослей, кл./мл
Пруд 1
x1
Пруд 2
x2
Пруд 3
x3
Пруд 4
x4
Пруд 5
x5
013517160252106
24245270113371201
48374491186710275
725456932691088451
9683911634471772689
1201544178879625341304
14423923460102448422161
16834334704213164783386
192658685263107104295326
21610129131984351199538928

Вопросы: На основе этих данных определить для популяции водорослей в каждом пруду значение мальтузианского параметра r (удельной скорости размножения) и период удвоения T . Найти также соответствующие медианы по полученным выборкам r и T .

Решение: Нелимитированный рост численности популяции описывается экспоненциальной функцией Мальтуса:

где x 0 – начальная численность популяции, r – мальтузианский параметр, t – время (см. рис.1.1).

Рис.1.1. Экспоненциальная зависимость численности популяции от времени при условии нелимитированного роста
Для обработки экспериментальных данных используем логарифмическую форму этого уравнения:

(1.4)
С этой целью каждый элемент 2-6 столбцов необходимо разделить на соответствующий начальный элемент и взять натуральный логарифм этого отношения (см. таблицу 1.2).
Далее, для каждого пруда на основе таблицы 1.2 следует построить график, где по оси абсциcc откладывается время, а по оси ординат – соответствующее значение ln (x t /x 0 ), как это показано на рис.1.2. Экспериментальные данные должны сгруппироваться около прямой линии, тангенс угла которой и есть искомое значение мальтузианского параметра r .

Таблица 1.2

Время, часln ( x 1 t /x 1 0 )ln ( x 2 t /x 2 0 )ln ( x 3 t /x 3 0 )ln ( x 4 t /x 4 0 )ln ( x 5 t /x 5 0 )
0,000,000,000,000,000,00
24,000,600,460,630,390,64
48,001,021,061,131,040,95
72,001,401,401,501,461,45
96,001,831,922,011,951,87
120,002,442,352,592,312,51
144,002,873,012,842,963,01
168,003,243,313,573,253,46
192,003,893,913,953,723,92
216,004,324,354,284,374,43

Рис.1.2. Линеаризация экспоненциальной зависимости, представленной на рис.1.1, и определение мальтузианского параметра r .
Значение периода удвоения T находим по формуле:
(1.5)
Результаты обработки данных в этой задаче представлены в таблице 1.3.

Таблица 1.3

T , час

Пруд 1Пруд 2Пруд 3Пруд 4Пруд 5
r , час -10.01970.02010.01980.01980.0204
35.1934.48353533.98

Медиану определяем обычным способом как срединное значение в выборке:

Ме( r )= 0.0198 час -1 , Ме( T )= 35 час.

Тема 2. Плотностно-зависимый рост популяций. Логистическое уравнение Ферхюльста.

Теория : При ограничении процессов размножения организмов в популяции каким либо ресурсом, например количеством доступной пищи, удельная скорость роста популяции зависит от ее численности (плотности). Математические модели, учитывающие данный эффект, называются моделями плотностно-зависимого роста. Логистическое уравнение Ферхюльста является простейшей моделью из этого ряда. В данной модели предполагается, что удельная скорость роста популяции линейно уменьшается с ростом численности, и имеется также некая предельная численность популяции, K , при достижении которой добавление к популяции новых особей возможно лишь при условии определенной гибели уже имеющихся особей. Эта предельная численность K носит название емкость среды. Данный параметр известен также как ресурсный. Уравнение Ферхюльста имеет следующий вид:

Здесь r – мальтузианский параметр, K – ресурсный параметр. Уравнение Ферхюльста имеет аналитическое решение:

где x 0 – начальная численность популяции. Пример логистической популяционной динамики приведен на рис. 2.1

Рис.2.1. Логистический рост популяции.

r = 0.07 год -1 , K = 1000 особей, >x 0 = 10 особей.

Условия: В 1937 г. на остров Протекшен у побережья штата Вашингтон завезли двух самцов и шесть самок обыкновенного фазана ( Phasianus colchicus ). За пять лет численность популяции фазана достигла 1325 размножающихся особей, т.е. возросла в 166 раз. Судя по некоторым признакам, рост этой популяции происходит по логистической кривой. От двух самцов и шести самок, привезенных на остров в 1937 г., она возросла до 30 особей к весне 1938 г., до 81 – в 1939 г., до 282 – в 1940 г., 641 – в 1941 г., 1194 – в 1942 г. и до 1898 – в 1943 г., когда на остров прибыли военные части, и солдаты начали охотиться на фазанов (рис.2.2). Однако, создается впечатление, что к 1943 г. численность популяции фазанов начитает стабилизироваться (Солбриг,Солбриг, 1982).

Рис.2.2. Измнение численности популяции фазанов на острове Протекшен.

Вопросы:

  1. Показать, что в данной популяции фазанов наблюдается плотностно-зависимый рост численности.
  2. Используя приведенные данные о росте численности популяции фазанов найти для этой популяции значения параметров логистическго уравнения Ферхюльста: мальтузианского параметра r и ресурсного параметра К .


Решение:
1. Для ответа на первый вопрос представим данные в координатах < ln ( x ) , t >, где x – численность популяции, t – время. При плотностно-зависимом росте данные в указанных координатах должны отклонятся от прямой линии с течением времени, что и наблюдается в нашем случае (рис.2.3). Это свидетельствует о том, что удельная скорость роста уменьшается с увеличением численности.

2. Решение второго вопроса разобьем на два этапа. На первом этапе используем приближенное выражение, получаемое из уравнения Ферхюльста (2.1):

Рис.2.3. Изменение численности популяции фазанов в полулогарифмических координатах

Для этого на основе первичных данных рассчитаем дополнительные переменные и , как это указано в таблице 2.1, и представим их в виде графика, где по оси абсцисс будем откладывать , а по оси ординат — (рис.2.4).

ln ( x )

1937,008,002,0819,001,16-5,741938,0030,003,4055,500,92-4,411939,0081,004,39181,501,11-3,401940,00282,005,64461,500,78-2,061941,00641,006,46917,500,60-1,061942,001194,007,091546,000,46-0,091943,001898,007,551,15

Рис.2.4. Определение параметра K по дополнительным переменным, представленным в таб. 2.1.

Точки на графике группируются около прямой линии, которая согласно выражению (2.3) пересекает ось абсцисс в точке, соответствующей величине K (рис.2.4). В рассматриваемом случае величина параметра K равна 2500.

Рис. 2.5. Определение параметра r по данным из таблицы 2.1.

Для нахождения параметра r воспользуемся интегральной формой уравнения Ферхюльста в логарифмическом виде:

На основе ряда x рассчитаем дополнительную переменную , как указано в таблице 2.1. и построим график для этой переменной против переменной t (рис. 2.5). Как видно, экспериментальные точки группируются около прямой линии, тангенс угла которой согласно выражению (2.4) дает значение параметра r . Для рассматриваемого случая tg a = 1.13. Учитывая размерность шкал получаем искомый ответ: r = 1.13 год -1 .

Условия: В Кузнецком Алатау на одном из охотучастков велась добыча соболя. Через некоторое время охотоведы заметили резкое снижение численности популяции. Когда численность соболя на участке упала ниже известной критической величины, был сделан вывод о неконтролируемом браконьерском промысле. Контролируемый промысел был остановлен, и был организован ежегодный учет численности популяции соболя. Данные представлены в таблице 2.2 и на рис.2.6.

Время, годЧисленностьВремя, годЧисленность
0112081940
1114792072
21189102173
31253112245
41346122293
51470132324
61620142343
71784152355

Рис.2.6. Изменение численности популяции соболя после отмены контролируемого промысла

Вопросы: По данным, представленным в таблице 2.2. определите, сколько соболей в год браконьеры добывали на данном участке N p , каковы кинетические параметры популяции соболей на данном участке ( r и K ), какова критическая численность популяции в условиях браконьерства x кр. и какова критическая величина промысла N кр .

Решение: Будем описывать динамику этой популяции следующим уравнением (Базыкин, 1985):

Здесь r — мальтузианский параметр, K – ресурсный параметр, N p – браконьерский промысел.

Для решения на первом этапе используем приближенную форму данного уравнения:

С этой целью на основе данных о x i и t i рассчитаем дополнительные переменные и (см. таб.2.3.), а затем построим график в этих координатах (рис.2.7). Точки на графике должны лечь на кривую, перевернутую параболу, которая пересекает ось абсцисс в точках X 1 и X 2 , соответствующих стационарным решениям уравнения (2.5).

Для исследуемой популяции по графику (рис.2.7) определяем, что X 1 = 1086 и X 2 = 2373. Из этих данных далее определяем значение параметра K , т.к. из теории (Базыкин, 1985) известно, что K = X 1 + X 2 . В нашем случае K =1086 + 2373 = 3459 особей.

Знание параметра K и значений X 1 и X 2 позволяет нам использовать для дальнейшего решения задачи интегральную форму уравнения (2.5):

Время, год

t

Численность

x

01120-3,60
11146113326,9-3,00
21189116842,2-2,43
31253122164,1-1,90
41345129992,4-1,37
514691407123-0,85
616201544150-0,34
7178317011630,16
8193918611560,67
9207220051321,18
10217321221011,69
112245220971,62,20
122292226847,82,71
132323230830,73,22
142342233319,23,72
152354234811,84,23

Рис.2.7. Определение параметров X 1 и X 2 , по данным из таблицы 2.3.

Рассчитаем соответствующую дополнительную переменную , как указано в таб.2.3. и построим график для этой переменной против переменной t (рис.2.8).

Рис.2.8. Определение параметра r по данным из таблицы 2.3.

Для этого графика tg a = 0.517. Далее определяем значение параметра r :

Учитывая размерность осей получаем r = 1.39 год -1 .

Значение параметра N p (интенсивность браконьерского промысла) находим из выражения: ,

Критическая численность популяции в условиях браконьерского промысла, согласно теории, равна стационарному решению X 1 , поэтому x кр. = 1086 особей. Критическую величину промысла N кр находим из соотношения особей.

Тема 3. Влияние концентрации лимитирующего субстрата на скорость размножения. Уравнение Моно.

Теория : Из множества необходимых для жизнедеятельности пищевых компонентов, субстратов, потребляемых организмами исследуемой популяции, субстрат, находящийся в наименьшей доступности и лимитирующий ростовые процессы, определяет скорость размножения. Этот принцип известен как принцип минимума Либиха. Количественная зависимость удельной скорости размножения r от количества (концентрации) лимитирующего субстрата S, как правило, имеет насыщающий характер и обычно описывается уравнением Моно (Печуркин, 1978; Ризниченко, Рубин, 1993):

Уравнение Моно имеет два параметра: r max – максимально возможная скорость размножения при избытке субстрата (размерность – [время] -1 ) и K S – коэффициент насыщения (размерность – аналогичная размерности субстрата). Согласно теории коэффициент насыщения численно равен той концентрации субстрата, при которой наблюдается половинная от максимальной скорость размножения. Типичный вид зависимости Моно представлен на рис.3.1.

Рис.3.1. Зависимость удельной скорости размножения от концентрации лимитирующего субстрата в соответствии с уравнением Моно

Условия: С целью определения кинетики размножения популяции бактерий Escherichia coli (кишечная палочка) изучали рост и размножение клеток данных бактерий при различных концентрациях лимитирующего субстрата, глицерина. Клетки выращивали при оптимальных условиях и через каждые полчаса измеряли оптическую плотность культуры (показатель, отражающий численность популяции). Полученные в результате эксперимента данные представлены в таблице 3.1. и на рис.3.2.

Таблица 3.1.

Время

час

Оптическая плотность культуры при различной концентрации субстрата (мг/л), Exln ( Ex t /Ex 0 )
при различной концентрации субстрата (мг/л)
5010020040080050100200400800
0,000,120,120,090,140,10-0,05-0,010,01-0,010,03
0,500,160,150,120,190,170,220,200,320,310,53
1,000,170,200,180,270,260,270,500,670,660,96
1,500,240,240,240,420,360,630,680,961,101,29
2,000,290,340,310,590,480,801,031,221,431,57
2,500,340,440,490,820,750,951,291,691,772,02
3,000,400,590,611,321,061,121,591,912,242,36
3,500,530,820,941,811,751,411,932,342,562,86
4,000,631,041,362,412,351,572,162,722,843,16
4,500,781,341,793,623,961,792,422,993,253,68

Рис.3.2. Изменение оптической плотности культуры клеток E.coli при различной концентрации лимитирующего субстрата (глицерина). Здесь S50 – концентрация субстрата 50 мг/л,

S100 – концентрация субстрата 100 мг/л и т.д.

Вопросы: Определить на основе представленных экспериментальных данных кинетические параметры размножения клеток кишечной палочки (параметры уравнения Моно, r max и K S )

Решение: На первом этапе обработки экспериментальных данных определим удельную скорость роста r клеток кишечной палочки для каждой концентрации лимитирующего субстрата по алгоритму, рассмотренному в задаче 1.1. В качестве показателя, отражающего относительное изменение численности популяции во времени, будем использовать отношение соответствующих значений оптической плотности Ex t /Ex 0 (Перт,1978). Рассчитаем для каждой концентрации дополнительную переменную ln( Ex t /Ex 0 ) и построим график зависимости этой переменной от времени (таб.3.1. и рис.3.3). Экспериментальные точки для каждой концентрации должны сгруппироваться около соответствующей прямой линии, тангенс угла которой равен оценке r для этой концентрации.

Рис.3.3. Определение значений удельной скорости размножения r клеток E.coli для каждой концентрации лимитирующего субстрата. Обозначения те же, что и на рис.3.2.

Определенные таким образом значения r для каждой концентрации лимитирующего субстрата S представлены в таблице 3.2., а соответствующий график – на рис.3.4.

Концентрация лимитирующего субстрата S , мг/л50100200400800
Удельная скорость размножения r , час -10.4050.550.670.730.78

Рис.3.4. Зависимость удельной скорости размножения исследуемой популяции кишечной палочки от концентрации лимитирущего субстрата, глицерина

Нетрудно видеть, что зависимость удельной скорости размножения от концентрации субстрата для исследуемой популяции имеет вид кривой с насыщением и по всей видимости описывается уравнением Моно (3.1).

Для нахождения параметров уравнения Моно воспользуемся методом Корниша-Боудена, “прямым линейным графиком”, разработанным специально для подобного рода зависимостей (Корниш-Боуден, 1979). С этой целью для каждой пары < S, r >из таб.3.2 на оси абсцисс влево будем откладывать значение – S , а на оси ординат – значение r . Далее через точки <- S, 0>и <0 , r >проводим прямую линию (рис.3.5), Таких линий на графике будет пять, по числу пар < S, r >. Данные прямые по теории Корниша-Боудена должны пересечься в одной точке, координаты которой дают искомые значения параметров уравнения Моно, K S и r max . В рассматриваемой задаче из-за наличия ошибок измерений точек пересечения прямых на графике (рис.3.5) больше, около десяти. В этом случае в качестве оценки рекомендуют брать медиану.

Рис.3.5. Определение кинетических параметров размножения клеток кишечной палочки K S и r max методом Корниша-Боудена на основе данных из таб.3.2.

Таким образом, по графику на рис.3.5. определяем, что для исследуемой популяции E.coli кинетические параметры размножения имеют следующие значения:

K S = 48 мг/л, r max = 0.83 час -1 .

Условия: Изучали кинетику размножения богомола. Исходя из предположения о пропорциональности между интенсивностью поедания пищи и скоростью размножения, измеряли зависимость между плотностью распределения пищи (мух) и количеством пищи, съеденной в единицу времени одной особью. Данные представлены в таблице 3.3 и на рис.3.6.

Среднее число мух на 1 м 200,0010,0020,0040,0070,0120,0170,020,03
Среднее число мух, съеденных одной особью05,79,414,518,521,623,023,425,3

Рис.3.6. Зависимость между плотностью распределения пищи и количеством пищи, съеденной в единицу времени, для популяции богомола

Вопросы: Определить по представленным данным кинетические параметры интенсивности поедания пищи богомолом, а также плотность распределения пищи, мух, при которой скорость размножения популяции богомола будет равна половине от максимальной.

Решение: Для ответа на первый вопрос отметим, что судя по графику на рис.3.6. кинетика поедания пищи богомолом подчиняется уравнению типа уравнения Моно:

Искомые параметры уравнения Моно I max и K S определим с помощью метода Корниша-Боудена, как это описано в задаче 3.1., используя данные из таб.3.3. Соответствующее решение предсталено на рис. 3.7.

Таким образом, для кинетики поедания мух богомолом I max = 28.5 усл.ед., K S = 0.0038 мух/м 2 .

Ответ на второй вопрос. Из пропорциональности между интенсивностью поедания пищи I и скоростью размножения r следут, что . Отсюда очевидно, что половинная скорость размножения популяции, 0.5 r ( S ), будет наблюдаться, когда плотность распределения мух S будет равна K S , т.е. 0.0038 мух/м 2 .

Рис.3.7. Определение кинетических параметров I max и K S по данным из таб.3.3 .

Условия: Исследовали кинетику размножения оленьей мыши исходя из тех же соображений, что и в задаче 3.2. Полученные данные о зависимости между плотностью распределения пищи, среднего числа коконов пильщиков на 1 м 2 , и средним числом коконов, съеденных одной мышью, представлены в таблице 3.4. и на рис. 3.8.

Среднее число коконов пильщиков на 1 м 2010204060100150200250Среднее число коконов, съеденных одной мышью02,695,199,6625,852,869,178,284

Вопросы: Проанализировать кинетику поедания коконов пильщиков оленьей мышью. Определить значения соответствующих параметров.

Рис.3.8. Зависимость между средним числом коконов пильщиков на 1 м 2 и средним числом коконов, съеденных одной мышью

Решение: На первом этапе анализа обратим внимание на то, что кривая зависимости между средним числом коконов пильщиков на 1 м 2 и средним числом коконов, съеденных одной мышью, представленная на рис.3.8, имеет два явно отличающихся участка. Первый начинается от нуля и заканчивается примерно на значении 40 коконов на 1 м 2 и характеризуется низкими значениями интенсивности поедания. Далее идет второй участок с существенно более высокими значениями интенсивности поедания, переход одного участка в другой характеризуется четко выраженным изломом на кривой.

Из этого наблюдения следует, что оленья мышь использует более сложный тип пищевого поведения. При низких плотностях пищи очевидно тип питания неспецифичен и характеризуется низким сродством к данному виду пищи. Когда же плотность пищи превышает некоторый порог, тип питания становится специфичным с повышением и сродства и скорости поедания.

Для проверки данного предположения построим график Корниша-Боудена, используя данные из таблицы 3.4.

Видно, что точки пересечения прямых на рис.3.9. группируются в двух различных областях. Это подтверждает предположение о двух кинетических типах пищевого поведения оленьей мыши: первый тип характеризуется высоким значением константы насыщения (низким сродством к пище) и низким значением максимальной интенсивности поедания пищи, второй тип – наоборот.

Рис.3.9. График Корниша-Боудена для данных из таб.3.4.

Переход от типа к типу наблюдается при плотности пищи примерно 40-50 коконов на м 2 (см рис.3.8). Для определения более точных значений кинетических параметров построим графики Корниша-Боудена отдельно для каждого участка (каждого типа пищевого поведения). Очевидно, что для второго участка с высокоспецифичным типом пищевого поведения значения абсцисс нужно брать с поправкой, уменьшать на 40 единиц. Рисунки 3.10 и 3.11 демонстрируют данный подход.

Таким образом, кинетика поедания коконов пильщиков оленьей мышью характеризуется наличием двух участков на оси плотности пищи: на первом участке (0-45 коконов на м 2 ) кинетика низкоспецифична и имеет параметры K S 1 = 250, I max 1 = 70, на втором участке (> 50 коконов на м 2 ) она более специфична с параметрами K S 2 = 7 0, I max 2 = 110.

Рис.3.10 и 3.11. Нахождение кинетических параметров I max и K S для двух различных участков пищевого поведения оленьей мыши.

K S 1 = 250, I max 1 = 70; K S 2 = 7 0, I max 2 = 110;

Моделирование. Решение популяционных задач

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Карп – мировой рекордсмен, вес 127 кг
Пойман на самодельную удочку в 2007г
Преподаватель информатики ЖИДКОВ А.В.
Моделирование.
Решение популяционных задач

Популяция и популяционная динамика
В биологии: популяция — совокупность особей вида, входящая в состав биогеоценоза.
Популяционная динамика, — исследует изменение численности популяции во времени.
Математическое моделирование помогает
формализовать знания об объекте,
дать описание процесса, предсказать его ход и эффективность,
дать рекомендации по управлению этим процессом.
Это крайне важно для биологических процессов, промышленного назначения — биотехнологических систем, продуктивность которых определяется ростом популяций живых организмов.

Популяционная модель неограниченного роста
Модель предложена Т. Мальтусом в 1798 г. в его работе «О росте народонаселения».

Где — численность популяции в году n;
— численность в году n+1;
— коэффициент рождаемости.

Томас Роберт Мальтус (1766-1834) английский демограф и экономист.
Обнаружил, что численность популяций растет в геометрической прогрессии, а производство продуктов питания линейно (в арифметической прогрессии), из чего сделал вывод, что неизбежно наступит мировой голод.

Популяционная модель ограниченного роста
Впервые ограниченный рост популяции, описал Ферхюльст (1848) – в логистическом уравнении.

Это уравнение в дискретном виде
Nn+1=Nn+kNn-qNn2
где Nn+1 численность популяции в году n+1;
Nn — численность популяции в году n;
k – коэффициент рождаемости;
q – коэффициент смертности.

Популяционная модель ограниченного роста
Уравнение ограниченного роста обладает двумя важными свойствами:
при малых х численность х возрастает экспоненциально;
при больших х — приближается к определенному пределу К.
Величина К называется емкость популяции, определяется ограниченностью пищевых ресурсов, мест для гнездования и многими другими факторами, которые могут быть разными для разных видов.
Динамика численности жука Rhizopertha dominica в
10-граммовой порции пшеничных зерен, пополняемых каждую неделю.
Динамика численности жука Rhizopertha dominica

Проверка возможности прогнозирования популяции интерполированием
Используя экспериментальные данные, проверить возможность прогнозирования численности популяции обычными методами интерполяции.
Сделать выводы о возможности применения этих методов в задачах о численности популяции.

Результаты проверки возможности прогнозирования

Вывод:
Методы интерполяции с использованием трендов, имеющиеся в MS Excel, не могут быть использованы для прогнозирования поведения модели ограниченного роста популяции.

Исследование модели популяции

Постановка задачи
Имеется заброшенный пруд, который может быть использован для разведения карпа.
Карпы питаются за счет ресурсов пруда.
Параметры прудового хозяйства определены в рамках математической модели ограниченного роста популяции.

Описание математической модели
Дано:
Nn+1 — численность карпа в году n+1.
Nn — численность карпа в году n.
k=1 – коэффициент рождаемости.
q =0,001 – коэффициент смертности.
Тогда: Nn+1=Nn + k·Nn- q·Nn2

Число карпов на начало года
Родилось карпов за год
погибло карпов
за год
Число карпов к концу года

Математическая модель с учетом ежегодного отлова
Дано:
Nn+1 — численность карпа в году n+1;
Nn — численность карпа в году n;
k=1 – коэффициент рождаемости;
q =0,001 – коэффициент смертности;
U – ежегодный улов, заданный количеством особей

Число карпов на начало года
Родилось карпов за год
погибло карпов
за год
Число карпов к концу года
отловлено карпов за год

Популяция карпа
компьютерная модель в Excel
Размещение исходных данных.

Цель моделирования
Определить емкость популяции.
Определить максимальный годовой улов рыбы, после стабилизации популяции на уровне емкости популяции.
Определить с какого года возможно отлавливать рыбу в максимальном размере.
Определить какое количество элитных мальков карпа надо запустить в пруд, чтобы начать отлов на максимальном уровне уже через год.
Определить через сколько лет окупятся затраты на приобретение элитных мальков. (Кредит 20% годовых)
Исследовать влияние коэффициента рождаемости на динамику популяции, дать своё обоснование каждому из полученных графиков.

Задание
Создать отчет о проведенном исследовании в виде презентации.
1.Слайд «Название и автор».
2.Исследование возможности прогнозирования
3. Слайд «Математическая модель».
4. Слайд «Реализация модели в Excel».
5-11. Слайды ответы на вопросы исследования.
12. Слайд «Направление дальнейших исследований».

Популяция карпа компьютерная модель, анализ результатов
Определение емкости популяции
Определение улова (недолов)
Определение улова (перелов)
Определение улова (оптимально)

Исследование влияния коэффициента рождаемости

Динамика численности
Lucilia cuprina
Стохастический характер численности популяции при высоком коэффициенте рождаемости.

Список источников информации
Задачник по моделированию «Информатика и ИКТ» 9-11 класс, Макарова Н.В., «Питер», 2008 год.
Избранные вопросы математического моделирования и численных методов. Учебное пособие. Автор/создатель: Тарасевич Ю.Ю.,Год: 2004. (http://window.edu.ru/library/pdf2txt/936/38936/16634/page6).
Г.Ю.Ризниченко Популяционная динамика (http://www.library.biophys.msu.ru/MathMod/PD.HTML).
Видео ролик video.raid.ru/pages/video/58845/.
Динамика численности Lucilia cuprina http://www.slidefinder.net/l/lect_15_fert_human_pop_growth/32718196/p2.
festival.1september.ru/articles/571753/prez.ppt
kvlar.3dn.ru/dowl/dinamika_populiacii.ppt
http://www.metod-kopilka.ru/page-2-2-9-9.html

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 115 человек из 42 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 233 человека из 54 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 351 человек из 63 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 584 210 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 12.12.2020
  • 125
  • 0
  • 11.12.2020
  • 172
  • 0
  • 04.12.2020
  • 91
  • 0
  • 23.11.2020
  • 108
  • 0
  • 20.11.2020
  • 73
  • 0
  • 19.09.2020
  • 87
  • 0
  • 07.09.2020
  • 206
  • 0
  • 16.08.2020
  • 123
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 19.10.2020 93
  • PPTX 2.5 мбайт
  • 3 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Салпагарова Мадина Ильясовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 29125
  • Всего материалов: 239

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Минпросвещения подключит студотряды к обновлению школьной инфраструктуры

Время чтения: 1 минута

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://masters.donntu.org/2009/fizmet/kucherenko/library/4.htm

http://infourok.ru/modelirovanie-reshenie-populyacionnyh-zadach-4725470.html