Исследовательская работа нестандартные способы решения квадратных уравнений

Исследовательская работа нестандартные способы решения квадратных уравнений

    Главная
  • Список секций
  • Математика
  • Нестандартные способы решения квадратных уравнений

Нестандартные способы решения квадратных уравнений

Автор работы награжден дипломом победителя III степени

Введение

Математическое образование, получаемое в школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям.

Актуальность темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе в 9 классе, а также 10 и 11 и при сдаче экзаменов.

Цель: Изучить стандартные и нестандартные способы решения квадратных уравнений

Задачи

  1. Изложить наиболее известные способы решения уравнений
  2. Изложить нестандартные способы решения уравнений
  3. Сделать вывод

Объект исследования: квадратные уравнения

Предмет исследования: способы решения квадратных уравнений

Методы исследования:

  • Теоретические: изучение литературы по теме исследования;
  • Анализ: информации полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.
  • Сравнение способов на рациональность их использования при решении квадратных уравнений.

Глава 1.Квадратные уравнения и стандартные способы решения

1.1.Определение квадратного уравнения

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0, где х – переменная, а, b и с– некоторые числа, причем, а ≠ 0.

Числа а, b и с — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b– вторым коэффициентом и число c – свободным членом.

Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + bх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + bх + с обращается в нуль.

Определение 4. Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Пример: – 7x + 3 =0

В каждом из уравнений вида a + bx + c = 0, где а ≠ 0, наибольшая степень переменной x – квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х2 равен 1, называют приведенным квадратным уравнением.

Пример

1.2.Стандартные способы решения квадратных уравнений

Решение квадратных уравнений с помощью выделения квадрата двучлена

Решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:(х + 12)(х — 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

Решение квадратного уравнения по формуле.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 выражение b 2 – 4ас = D — по знаку которого судят о наличии у этого уравнения действительных корней.

Возможные случаи в зависимости от значения D:

  1. Если D>0, то уравнение имеет два корня.
  2. Если D= 0, то уравнение имеет один корень: х =
  3. Если D 2 + bx + c = 0.

Обозначим второй коэффициент буквой р, а свободный член буквой q:

х 2 + px + q = 0, тогда

Глава 2.Нестандартные способы решения квадратных уравнений

2.1.Решение с помощью свойств коэффициентов квадратного уравнения

Свойства коэффициентов квадратного уравнения – это такой способ решения квадратных уравнений, который поможет быстро и устно найти корни уравнения:

  1. Еслиа+ b+c=0, тоx1= 1,x2=

Пример. Рассмотрим уравнение х 2 +3х – 4= 0.

Проверим полученные корни с помощью нахождения дискриминанта:

Следовательно, если + b +c= 0, то x1 = 1, x2 =

  1. Еслиb =a+c, тоx1= -1,x2=

Пример. Рассмотрим уравнение 3х 2 +4х +1 = 0, a=3, b=4, c=1

Значит корнями этого уравнения являются –1 и . Проверим это с помощью нахождения дискриминанта:

D= b 2 – 4ас=4 2 – 4·3·1 = 16 – 12 = 4

2.2.Способ «переброски»

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а±b+c≠0, то используется прием переброски:

Применяя способ «переброски» получаем:

Таким образом, с помощью теоремы Виета получаем корни уравнения:

Однако корни уравнения необходимо поделить на 3 (то число, которое «перебрасывали»):

Значит, получаем корни: x1 = -1, x2 = .

2.3.Решение с помощью закономерности коэффициентов

  1. Если уравнениеax 2 + bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 +10х +3 = 0.

Таким образом, корни уравнения: x1 = -3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 — bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 10х +3 = 0.

Таким образом, корни уравнения: x1 = 3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 + bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = —a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 + 8х —3 = 0..

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

  1. Если уравнениеax 2 — bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 8х —3 = 0..

Таким образом, корни уравнения: x1 = 3, x2 = —

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

2.4.Решение с помощью циркуля и линейки

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис.6 ).

Допустим, что искомая окружность пересекает ось

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис.8б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра AS SB, R> б) AS=SB, R= в) AS 2 — 2х — 3 = 0 (рис.8).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

2.5.Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

Примеры.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.9).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей:

первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим:

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

Решение представлено на рис 10. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис. .

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем

На рис 11. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25, или у — 3 = ± 5, где у1 = 8 и у2 = — 2.

Заключение

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Нужно отметить, что каждый способ решения квадратных уравнений по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставил задачу, выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение с помощью выделения квадрата двучлена
  • Разложение левой части на множители
  • Решение квадратных уравнений по формуле
  • Решение с помощью теоремы Виета
  • Графическое решение уравнений

Нестандартные методы:

  • Свойства коэффициентов квадратного уравнения
  • Решение способом переброски коэффициентов
  • Решение с помощью закономерности коэффициентов
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Исследование уравнения на промежутках действительной оси
  • Геометрический способ

При этом следует заметить, что каждый способ обладает своими особенностями и границами применения.

Решение уравнений с использованием теоремы Виета

Достаточно легкий способ, дает возможность сразу увидеть корни уравнения, при этом легко находятся только целые корни.

Решение уравнений способом переброски

За минимальное количество действий можно найти корни уравнения, применяется совместно со способом теоремы Виета, при этом также легко найти только целые корни.

Свойства коэффициентов квадратного уравнения

Доступный метод для устного нахождения корней квадратного уравнения, но подходит только к некоторым уравнениям

Графическое решение квадратного уравнения

Наглядный способ решения квадратного уравнения, однако могут возникать погрешности при составлении графиков

Решение квадратных уравнений с помощью циркуля и линейки

Наглядный способ решения квадратного уравнения, но также могут возникать погрешности

Геометрический способ решения квадратных уравнений

Наглядный способ, похож на способ выделения полного квадрата

Решая уравнения разными способами, я пришел к выводу, что зная комплекс методов решения квадратных уравнений, можно решить любое уравнение, предлагаемое в процессе обучения.

При этом, следует заметить, что одним из более рациональных способов решения квадратных уравнений является способ «переброски» коэффициента. Однако самым универсальным способом можно считать стандартный способ решения уравнений по формуле, потому что данный способ позволяет решить любое квадратное уравнение, хотя иногда и за более длительное время. Также такие способы решения, как способ «переброски», свойство коэффициентов и теорема Виета помогаю сэкономить время, что очень важно при решении заданий на экзаменах и контрольных работах.

Думаю, что моя работа будет интересна учащимся 9-11 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. Также она будет интересна и учителям математики, за счет рассмотрения истории квадратных уравнений и систематизации способов их решения.

Список литературы

  1. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  2. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.
  3. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2014 г.
  4. Кулагин Е. Д. «300 конкурсных задач по математике», 2013 г.
  5. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2012 г.
  6. .Барвенов С. А «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
  7. Супрун В.П. «Нестандартные методы решения задач по математике» — Минск «Полымя», 2010г
  8. Шабунин М.И. «Пособие по математике для поступающих в вузы», 2005г.
  9. Башмаков М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.
  10. Шаталова С. Урок – практикум по теме «Квадратные уравнения».- 2004.

«Нестандартные методы решения квадратных уравнений»

Теория уравнений занимает ведущее место в алгебре и математике в целом. Сила теории уравнений в том, что не только имеет теоретическое значение для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках учащиеся знакомятся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Данная работа показать различные способы решения квадратных уравнений, уделяеется особое внимание тем, которые не изучаются в школьной программе.

Скачать:

ВложениеРазмер
Школьная конференция239.72 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение
Средняя общеобразовательная школа №72 г. Липецка

Название работы: Нестандартные методы решения квадратных уравнений

Камышов Даниил Николаевич

Зуев Егор Алексеевич

Учащиеся 8 Б класса

РуководителиьФедулова Ольга Николаевна

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Для выявления актуальности моей темы я провела исследование. Учащимся 8-11 классов было предложено решение полного квадратного уравнения любым известным им способом. В исследовании приняло участие 114 учащихся из 8-х, 9-х,11-х классов. Результаты исследования выявили следующее:

Способы решения квадратного уравнения

Метод выделения квадрата двучлена

Метод разложения левой части уравнения на множители способом группировки

Решение уравнения по формулам дискриминанта и корней квадратного уравнения

Решение уравнения, используя теорему Виета.

Решение уравнения графическим способом.

Неверно решили уравнение

Актуальность темы исследования.

Теория уравнений занимает ведущее место в алгебре и математике в целом. Сила теории уравнений в том, что не только имеет теоретическое значение для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Все это заинтересовало меня, и поэтому, для своей исследовательской работы выбрал тему «Способы решения квадратных уравнений».

Цель исследовательской работы : выявить способы решения квадратных уравнений, узнать можно ли решить любое квадратное уравнение данными способами и выделить особенности и недостатки этих способов.

Задачи исследовательской работы : проанализировать источники литературы для выявления способов решения квадратных уравнений, показать различные способы решения квадратных уравнений.

  1. Познакомиться с историческими фактами, связанными с данным вопросом.
  2. Описать технологии различных существующих способов решения уравнений второй степени.
  3. Провести анализ этих способов, сравнить их.
  4. Привести примеры применения различных способов решения уравнений.
  5. Поделиться полученными данными работы с учащимися 8-х классов.

Объект исследовани я: квадратные уравнения.

Предмет исследования: способы решения квадратных уравнений.

Гипотеза: существуют ли другие способы решения квадратного уравнения и имеют ли они право на существование?

Практическая значимость: квадратные уравнения – это фундамент, на котором построен курс алгебры. К решению квадратных уравнений сводятся решения дробно-рациональных уравнений и текстовых задач, находят широкое применение при решении тригонометрических, логарифмических, иррациональных уравнений. Начинают изучать решение квадратных уравнений в 8 классе и решают их до окончания вуза.

Методы исследования: анализ литературы, социологический опрос, наблюдение, сравнение и обобщение результатов

Этапы выполнения исследовательской работы:

1. Этап «Сбор статистических данных».

Включает в себя: изучение поставленных задач, определение значимых понятий, подбор источников информации, сбор информации.

2. Этап «Обработка данных».

Включает в себя: практическое применение способов решения квадратных уравнений.

3. Этап «Анализ данных»

Включает в себя: анализ результатов, формулирование выводов

История возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений. Правило решения таких уравнений, изложенное в вавилонских текстах, совпадают с современным, однако неизвестно, каким образом дошли они до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Задачи на квадратные уравнения встречаются уже в 499 г. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Часто они были в стихотворной форме.

Вот одна из задач знаменитого индийского математика XIIв. Бхаскары.

Обезьянок резвых стая

Власть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась,

А двенадцать по лианам

Стали прыгать, повисая.

Сколько ж было обезьянок

Ты скажи мне, в этой стае?

Квадратные уравнения в Европе 13-17 вв. Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардом Фибоначчи. Эта книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники 14-17 веков. Общее правило решения квадратных уравнений вида было сформировано в Европе лишь в 1544 году Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики 16 века. учитывали помимо положительных, и отрицательные корни. Лишь в 17 веке благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

  1. «Квадраты равны корням», т.е. ax 2 + c =bx (5х 2 =10х).
  2. «Квадраты равны числу», т. е. ax 2 =c (5x 2 =80).
  3. «Корни равны числу», т. е. ax=c (4х=20).
  4. «Квадраты и числа равны корням»,т.е. ax 2 +c=bx (х 2 + 10х=39).
  5. «Квадраты и корни равны числу», т. е. ax 2 +bx=c (x 2 +21=10x).
  6. Корни и числа равны квадратам», т. е. bx+c=ax 2 (3х+4=х 2 )

Его решение, конечно, не совпадает полностью с нашим. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства. Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х 2 +bх=с, при всевозможных комбинациях знаков коэффициентов b, c , было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых вXVIв. учитывают, помимо положительных, и отрицательные корни. Лишь вXVIIв. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была сформулирована им впервые в 1591г.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета ещё далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2.1. Определение квадратного уравнения и его виды.

1) Алгоритм – точное предписание (правило) о выполнении в определенном порядке указанных операций (шагов алгоритма), позволяющее решать все задачи определенного вида.

2) Квадратным уравнением называют уравнения вида:

ax 2 +bx-c=0 , где a, b, c – некоторые действительные числа.

а – первый или старший коэффициент;

b – второй коэффициент или коэффициент при х;

с – свободный член.

3) Квадратное уравнение называют приведенным , если старший коэффициент равен 1;квадратное уравнение называют непереведенным , если старший коэффициент отличается от 1.

4)Корнем квадратного уравнения называют всякое значение переменной х, при котором квадратный трехчлен обращается в нуль.

5) Решить квадратное уравнение – значит найти все его корни или установить, что корней нет.

2.2. Решение квадратного уравнения общеизвестными способами.

Разложение левой части уравнения на множители.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению.

Решим уравнение х 2 +10х-24=0.

Разложим левую часть уравнения на множители:

Х 2 +10х-24=х 2 +12х-2х-24=х(х+12)-2(х+12)=(х+12)(х-2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайней мере один из множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х=2,а уравнение х 2 +10х-24=0.

Решение квадратного уравнений по формуле

Умножим обе части уравнения ax 2 +bx+c=0 , а ≠ 0, на 4а и, следовательно, имеем :

4а 2 х 2 +4аbc+4ac=0

((2ax) 2 +2ax ∙ b + b 2 )-b 2 +4ac=0

Выражение b 2 — 4 ac называют дискриминантом и обозначают D, причем

  • Если D>0, то уравнение ax 2 +bx+c=0 имеет два различных корня;
  • Если D=0, то два одинаковых корня;
  • Если D

Решение уравнений с использование теоремы Виета (прямой и обратной)

1)Как известно, приведенное квадратное уравнение имеет вид:

Его корни удовлетворяют теореме Виета , которая при а=1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

А) Если свободный член q приведенного уравнения (1) положителен (q> 0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p.

Если p>0, то оба корня отрицательные, если p

х 2 -3x+2=0; x 1 = 2 bx 2 =1, так как q = 2>0 и q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х 1 = – 7 и х 2 = – 1, так как q = 7 > 0 и p = 8 >0.

Б) Если свободный член q приведенного уравнения (1) отрицателен (q 0. Например, х 2 + 4х – 5 = 0; х 1 = – 5 и х 2 = 1, так как q = – 5 0; х 2 – 8х – 9 = 0; х 1 = 9 и х 2 = – 1, так как q = – 9 0.

2) Теорема Виета для квадратного уравнения ax 2 +bx+c=0 имеет вид :

Справедлива теорема, обратная теореме Виета:

Если х 1 и х 2 таковы, что х 1 +х 2 = -p, х 1 х 2 = q, то х 1 и х 2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

Попробуем найти два числа х 1 и х 2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

  1. Решить уравнение 😡 2 +3x-28

Попробуем найти два числа х 1 и х 2 , такие, что

Нетрудно заметить, что такими числами будут — 7 и 4. Они и являются корнями данного уравнения.

Нетрадиционных способы решения квадратных уравнений

1. Метод выделения полного квадрата

Решим уравнение х 2 + 6х — 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение х 2 + 6х в следующем виде: х 2 + 6х = х 2 + 2 • х • 3 .

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х и 3. Поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , т.к.

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 +6х-7=х 2 +2• х • 3 +3 2 — 3 2 -7= (х+3) 2 — 9 -7= (х+3) 2 -16.

Таким образом, данное уравнение можно записать так:

(х+ 3) 2 -16 = 0, т.е. (х+ 3) 2 = 1б.

Следовательно, х + 3 = 4, х 1 = 1, или х +3 = -4 , х 2 = — 7.

2. Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

ах 2 +Ьх+ с= 0, а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + аЬх + ас = 0.

Пусть ах = у, откуда х = ; тогда приходим к уравнению

равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получим х 1 = и х 2 = . При этом способе коэффициент а умножается на свободный член, как 6ы «перебрасывается» к нему, поэтому его и называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

2х 2 — 11х + 15 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме у 1 = 6 х 1 = х 1 = 3

У 2 = 5 х 2 = х 2 = 2,5

3. Учёт свойств коэффициентов квадратного уравнения

А. Пусть дано квадратное уравнение

1. Если, а + Ь + с = 0 (т.е. сумма коэффициентов равна нулю), то

Доказательство . Разделим обе части уравнения на а ≠ 0, получим приведённое квадратное уравнение: х 2 + х + = 0.

Согласно теореме Виетаx 1 + x 2 = —

По условию, а + b + с = 0, откуда b = — a — с. Значит,

Получаем x 1 = 1, x 2 = , что и требовалось доказать.

2. Если, a — b + c = 0, или b = a + c, то x 1 = — 1, x 2 = — .

Доказательство. По теореме Виета

По условию, a — b + c = 0, откуда b = a + c . Таким образом,

т.е. х 1 = -1 и х 2 = , что и требовалось доказать.

1.Решим уравнение 345х 2 —137х — 208 = 0.

Решение. Так как а + b + с = 0 (345 — 137 — 208 = 0), то х 1 = 1, х 2 = = .

2. Решим уравнение 132x 2 + 247x + 115 = 0

Решение. Т.к. a – b + c = 0 (132 — 247 + 115 = 0 ), то x 1 = -1, x 2 = —

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

X 1,2 = можно записать в виде х 1,2 =

Решим уравнение 3x 2 – 14x + 16 = 0

Решение. Имеем :a = 3, b = — 14, c = 16, k = — 7;

D=k 2 – ac = (-7) 2 – 3 • 16 = 49 -48 =1, D>0 , два различных корня ;

X = = ; X 1 = 2 , X 2 = .

В. Приведенное уравнение х 2 + px + q = 0

Совпадает с уравнением общего вида, в котором a=1, pи c = q. Поэтому для приведенного квадратного уравнения формула корней

принимает вид: x 1,2 = , или x 1,2 = — 2 – q. (2).

Формулу (2) особенно удобно использовать, когда p – чётное число.

1. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем: х 1,2 = 7 ± = 7 ± = 7 ± 8

Ответ. X 1 = 15, x 2 = -1.

4. Решение квадратного уравнения графическим способом

Если в уравнении : х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px – q.

Построим графики зависимости у = х2 и у = — px — q.

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая.

Возможны следующие случаи :

-прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут качаться (только одна общая точка), т.е. уравнение имеет одно решение;

-прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим графически уравнение : х 2 — 3х — 4 = 0

Решение. Запишем уравнение в виде : х 2 = 3х + 4.

Построим параболу у = х 2 и прямую у = 3х + 4.

Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13).

Прямая и парабола пересекаются в двух точках А и В с абсциссами х 1 = -1 и х 2 = 4.

Ответ.х 1 = -1, х 2 = 4.

5. Решение квадратных уравнений с помощью циркуля и линейки

Графический способ решения квадратных уравнений с помощью параболы не всегда удобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точность получаемых результатов невелика. Существует способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки.

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х 1 ; 0 ) и D (х 2 ; 0), где х 1 и х 2 — корни уравнения ах 2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х 1 х 2 / 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках В (х 1 ; 0) и D(х 2 ; 0), где х 1 и х 2 — корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох в точке В (х 1 ; 0), где х 1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

Решим уравнение х 2 — 2х — 3 = 0

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

Ответ: х 1 = — 1; х 2 = 3.

6. Решение квадратных уравнений с помощью номограмм

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 ( см. Брадис В.М. Четырехзначные математические таблицы. — М, Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициент там определить корни уравнения.

Криволинейная шкала номограммы построена по формулам

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Если дано полное квадратное уравнение, то его надо привести к приведенному квадратному уравнению z 2 + pz + q = 0

Затем второй коэффициент и свободный член из уравнения отметить на соответствующих осях p и q, полученные точки соединить прямой.

Прямая пересекает кривую шкалу в двух точках – корнях данного уравнения, если корни положительные.

  • Если уравнение имеет корни разного знака, то прямая пересечет кривую шкалу в одной точке – это положительный корень. Отрицательный корень находят, вычитая положительный корень из –p.
  • Если же корни отрицательные, то по номограмме находят два положительных корня t 1 и t 2 для уравнения z 2 – pz + q = 0, а для уравнения z 2 + pz + q = 0 корнями будут z 1 = -t 1 , z 2 = -t 2

1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0

2) Решим с помощью номограммы уравнение 2z 2 — 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

Номограмма дает корни z 1 = 4 и z 2 = 0,5.

3) Для уравнения z 2 — 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t 2 — 5t + 2,64 = 0, которое решаем посредством номограммы и получим t 1 = 0,6 и t 2 = 4,4, откуда z 1 = 5t 1 = 3,0 и z 2 = 5t 2 = 22,0.

7. Геометрический способ решения квадратных уравнений

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми. Уравнение х 2 + 10х = 39

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39».

Строим квадрат со стороной х и на его сторонах – четыре прямоугольника высотой . В углах фигуры построим четыре квадрата со стороной . В углах фигуры построим четыре квадрата .

Подсчитаем площадь получившегося большого квадрата:

X 2 + 4 • • ( ) 2 = x 2 + 10x + ( ) 2 • 4

По условию x 2 + 10x = 39, т.е. площадь большого квадрата равна

39 + ( ) 2 • 4 = 39 + + 25 =64.

Значит, его сторона равна 8, тогда x + 2 • ( ) = 8, x = 3 (Ал–Хорезми не признавал отрицательных чисел)

А вот, например, как древние греки решали уравнение y 2 + 6y – 16 = 0

Решение представлено на рис., где у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8.

8. Решение уравнений с использованием теоремы Безу

Теорема Безу. Если уравнение a 0 x n + a 1 x n-1 … + a n-1 x + a n = 0, где все коэффициенты целые, имеет целые корни, то это делители свободный член.

Следствие 2: Если b является корнем многочлена f (x), то этот многочлен делится на (x-b) без остатка.

Теорема Безу даёт возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше.

Таким образом, один корень найден и далее находятся уже корни многочлена, степень которого на единицу меньше степени исходного многочлена. Иногда этим приёмом – он называется понижением степени – можно найти все корни заданного многочлена.

Решить квадратное уравнение: х 2 – 4х + 3 = 0

Делители свободного члена ±1, ±3.

Проверим 1, подставив в уравнение 1 – 4 + 3 = 0. Значит 1 – это корень данного уравнения. Тогда квадратный трёхчлен х 2 — 4х + 3 делится нацело на (х-1).

Разделим f(x) на (x-1), получим:

Х 2 – 4х + 3 = (х-1)(х-3)

x – 1 = 0; х 1 = 1, или х-3=0, х 2 =3

Ответ: х 1 = 1, х 2 =3.

Человечество прошло длинный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание всё более полным и совершенным.

Уравнения – язык алгебры, квадратные уравнения – это фундамент, на котором построено величественное здание алгебры. Изученные способы решения квадратных уравнений будут применяться и при дальнейшем изучении математики, при решении уравнений, сводящихся к решению квадратных.

В ходе выполнения работы с поставленной целью и задачами я справилась, мне удалось обобщить и систематизировать изученный материал по выше указанной теме. Проанализировав все новые способы решения квадратных уравнений, стало очевидным, что нельзя однозначно сказать, какой именно метод наиболее удобен или совершенен. Некоторые ( такие как, решение с использованием теоремы Безу и решение с помощью циркуля и линейки) удобно применять, когда коэффициенты невелики, другие – допускают большие коэффициенты ( например, учёт коэффициентов): графический не всегда точен, а геометрический понятен, но громоздок. Можно сделать вывод, что все способы надо иметь в своем арсенале и применять их по мере необходимости с точки зрения рациональности решения.

Данная работа помогла мне обобщить способы решения квадратных уравнений, которые не изучают в школе. Нужно отметить, что не все они удобны для решения, но каждый из них уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на ОГЭ и ЕГЭ.

С результатами моей работы я познакомлю одноклассников и учеников других 8-х классов. Они могут воспользоваться собранными материалами для изучения и закрепления рациональных способов решения квадратных уравнений. В дальнейшем я планирую провести опрос, насколько интересна информация, предложенная в буклете, и используют ли они данные способы для решения квадратных уравнений, если да, то какой способ они считают наиболее простым и понятным.

1.Брадис В.М. Четырёхзначные математические таблицы для средней школы.

Изд. 57-е. – М., Просвещение, 1990. С. 83.

2.Окунев А.К. Квадратные функции, уравнения и неравенства. Пособие для учителя. – М., Просвещение, 1972.

3.Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. – М., Квант, № 4/72. С. 34.

4.Соломник В.С., Милов П.И. Сборник задач по алгебре и элементарными функциям. Пособие для учителя. Изд. 2-е. – М., Просвещение, 1970.

Учебный проект «Нестандартные приемы решения квадратных уравнений»

Разделы: Математика

Тема «Квадратные уравнения» является одной из самых актуальных. Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение в разных разделах математики.

В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения.

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Гипотеза: установление связи между коэффициентами и корнями квадратного уравнения позволит найти эффективные приемы быстрого решения квадратного уравнения.

Цель: установив связь между коэффициентами и корнями квадратного уравнения, найти новые рациональные приемы решения уравнений

  • Изучить литературу по истории приемов решения квадратных уравнений
  • Обобщить накопленные знания о квадратных уравнениях и способах их решения.
  • Установить зависимость корней квадратного уравнения от его коэффициентов и найти эффективные приемы быстрого решения квадратного уравнения, в том числе с большими коэффициентами.
  • Сделать выводы.
  • Разработать дидактический материал для проведения практикума по решению квадратных уравнений с использованием новых приемов в помощь ученикам, увлеченным математикой и учителям, ведущим факультативные занятия.

Объект исследования: квадратные уравнения

Предмет изучения: методы и приемы решения квадратных уравнений, в том числе с большими коэффициентами

Глава 1.
Изучение литературы

Основной материал, связанный с изучением темы «Квадратные уравнения» находится в УМК под ред.С.А.Теляковского. В учебнике разобраны все основные вопросы по теме:

1. Определение и виды квадратных уравнений

2. Основные методы решения квадратных уравнений

Однако, дополнительный материал, связанный с историей вопроса о возникновении квадратных уравнений можно найти в «Энциклопедия по математике» «Занимательная математика», М., 2007. Способы решения задач на квадратные уравнения в полном объёме раскрыты в изданиях «Сборник элективных курсов» Волгоград, 2006 г.

Изученная литература позволила приобрести новые интересные знания по истории возникновения квадратного уравнения, приобрести опыт по решению различных квадратных уравнений и перейти к следующему этапу в исследовании – перенести полученные знания в нестандартную ситуацию.

Глава 2.
Изучение истории вопроса о квадратных уравнениях

Глава 3.
Обобщение имеющихся знаний о квадратных уравнениях и способах их решения

Глава 4.
Нестандартные приемы решения квадратных уравнений

Дидактический материал по применению нестандартных приемов решения квадратных уравнений.

1. Найди наиболее рациональным способом корни уравнения:

1978х 2 – 1984х + 6=0
(1; 6/1978)

4х 2 + 11х + 7 = 0
(-1; -7/4)

319х 2 + 1988х +1669=0
(-1; -1669/319)

2. Решить квадратные уравнения с большими коэффициентами

839х 2 – 448х -391=0
(1; -391/839)

345х 2 – 137х – 208=0
(1;.-208/345)

3. Используя полученные знания, установи соответствие:

1) х 2 +5х+6=0
2) 6х 2 -5х+1=0
3) 2х 2 -5х+3=0
4) 3х 2 -5х+2=0
5) х 2 -5х+6=0
6) 6х 2 +5х+1=0
7) 2х 2 +5х+2=0
8) 3х 2 +5х+2=0
1) 1/6;1/2
2) 1; 3/2
3) 1; 2/3
4) -2; -3
5) -1/3 ; -1/2
6) -1; -3/2
7) -1; -2/3
8) 2;3

Глава 5.
Анализ работы учащихся по решению квадратных уравнений нестандартными способами

Разработаны критерии оценки проведенного практикума:

  1. За каждое верно выполненное задание ставится 1 балл;
  2. Наиболее возможное количество набранных баллов-17
  3. Если ученик набирает менее

7 баллов, то выставляется оценка «2»
от 7 до 11 баллов «3»
от 12 до 15 баллов «4»
от 16-17 баллов «5»

Выполняли работу – 11человек

от 16-17 – 5человек (45%)
от 12-15– 6человек (55%)
Менее 12 – 0 человек

Средний балл – 4,45

Процент качества – 100%

Типичные ошибки, допущенные в работе связаны с невнимательностью учащихся.

Выводы по результатам проведения практикума

Успешно выполненная работа учащимися 8 класса, позволяет сделать следующие выводы:

  • нестандартные приемы решения квадратных уравнений заслуживают внимания;
  • позволяют экономить время решения, что обусловлено применением тестовой системы экзаменов.

В процессе работы над проектом, была создана система нестандартных приемов решения квадратных уравнений и разработан банк заданий, на основе которого проведена успешная апробация этих приемов.

Данный материал можно рекомендовать для внеклассных и факультативных занятий по математике. Учителя могут использовать его как методическое пособие при изучении темы «Решение квадратных уравнений», а также, для контроля за знаниями учащихся.

Материалом этого проекта могут воспользоваться и те, кто любит математику и хочет знать о математике больше.

  1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.
  2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  3. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.
  5. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  6. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.


источники:

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2018/09/26/nestandartnye-metody-resheniya-kvadratnyh

http://urok.1sept.ru/articles/630088