История появления системы линейных уравнений

Презентация «Из истории решения систем уравнений».

Роль великих математиков в развитии методов решения систем уравнений.

Просмотр содержимого документа
«Презентация «Из истории решения систем уравнений».»

«Из истории решения систем уравнений»

Урок алгебры в 9 классе.

Автор: учитель первой категории Кочевых Р. П.

Кто хочет ограничиться

настоящим без знания прошлого,

тот никогда его не поймет.

В древневавилонских текстах, написанных в III – II тысячелетиях до н.э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения второй степени. Вот одна из них. Площади двух своих квадратов я сложил: . Сторона второго квадрата равна стороны первого и еще 5. Соответствующая система уравнений в современной записи имеет вид:

  • Для решения этой системы вавилонский автор возводит во втором уравнении у в квадрат, получает ,
  • Подставив это значение в первое уравнение, получает .
  • Решая уравнение, находит х , затем у.
  • Так как вавилоняне не имели обозначений для многих неизвестных, то они прилагали немало усилий для выбора неизвестного таким образом, чтобы свести решение системы к решению одного уравнения.

Математик эпохи эллинизма, один из основоположников алгебры. Жил и работал в Александрии.

Ввел буквенную символику. Работы Диофанта в области теории чисел послужили основанием для дальнейших исследований.

Его именем названы: диофантовы уравнения — алгебраические уравнения или системы алгебраических уравнений с рациональными коэффициентами, решения которых отыскиваются в целых и рациональных числах.

Диофант -последний из великих математиков античности.

Задача Найти два натуральных числа, зная, что их сумма равна 20, а сумма их квадратов 208. Мы бы решали эту задачу составлением системы уравнений:

Диофант же, выбирая в качестве неизвестного половину разности искомых чисел, получает ( в современных обозначениях):

x 2 + y 2 = (z + 10) 2 + (10 – z) 2 = 2z 2 + 200, а по условию это равно 208,

z = ± 2; z = — 2- не удовлетворяет условию задачи, поэтому, если z = 2, то

В XVII — XVIII в.в. приемы исключения при решении систем уравнений разрабатывали Ферма, Ньютон, Лейбниц, Эйлер, Безу, Лагранж В современной записи система двух линейных уравнений с двумя неизвестными имеет вид

  • Решение этой системы выражается формулами

Нижние индексы при буквах впервые употребил в 1675 году немецкий математик Лейбниц, что в большей мере способствовало созданию теории определителей.

31.III. 1596 – 11.II. 1650

Родился в 1596 г. в городе Лаэ во Франции в дворянской семье. Отец хотел из сына сделать офицера. Но Рене интересовала математика. Вскоре он познакомился с Мерсеном, а затем и с другими математиками Франции.

Будучи в армии, Декарт изучил алгебру немецких, математику французских и греческих ученых. Декарт был крупнейшим философом и математиком своего времени. Самым известным его трудом является «Геометрия». Декарт ввел прямоугольную систему координат, установил соответствие между числами и отрезками прямой и таким образом ввел алгебраический метод в геометрию. Это позволило решать системы уравнений графическим методом. Эти открытия Декарта дали огромный толчок развитию математики.

Крамер Габриель (1704-1752)- швейцарский математик. Учился и работал в Женеве. Основные труды по высшей алгебре и аналитической геометрии.

Установил и опубликовал (1750г.) правила решения систем n линейных уравнений с n неизвестными с буквенными коэффициентами (правило Крамера), заложил основы теории определителей .

23.02.1855) немецкий математик, внесший фундаментальный вклад также в астрономию и геодезию, почетный член Петербургской Академии Наук, именем которого назван метод решения

развитие методов решения систем уравнений прошло длинный путь; — только благодаря трудам ученых решение систем уравнений приняло современный вид.

Математические уравнения и их использование в решении задач

Математические уравнения и их использование в решении задач

Глава 1. История возникновения уравнений

Глава 2. Решения уравнений и способы их упрощения

Глава 3. Использование уравнений при решении задач

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Глава 1. История возникновения уравнений

Алгебра как искусство решать уравнения зародились очень давно в связи с потребностью практики, в результате поиска общих приёмов решения однотипных задач. Самые ранние дошедшие до нас рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приёмы решения линейных уравнений. Слово «алгебра» возникло после появления тракта «Китаб аль-джебр валь-мукабала» хорезмского математика и астронома Мухамеда Бен Муса аль Хорезми. Термин «аль-джерб», взятый из названия этой книги, в дальнейшем стал употребляться как алгебра.

Знак равенства ввел в 1556 году английский математик Рекорд, который объяснил это так, что ничто не может быть более равным, чем два параллельных отрезка.

Франсуам Виемт (фр. Franзois Viиte, seigneur de la Bigotiиre; 1540 — 13 декабря 1603) — выдающийся французский математик, один из основоположников алгебры

Создателем современной буквенной символики является французский математик Франсуа Виет (1540 — 1603). До XVI в. изложение алгебры велось в основном словесно. Буквенные обозначения и математические знаки появлялись постепенно.

Знаки + — впервые встречаются у немецких алгебраистов XVI в. Несколько позже вводится знак * для умножения. Знак деления (:) был введён лишь в XVII в. Решительный шаг в использовании алгебраической символики был сделан в XVI в., когда французский математик Франсуа Виет (1540-1603) и его современники стали применять буквы для обозначения не только неизвестных (что делалось и ранее), но и любых чисел. Однако эта символика ещё отличалась от современной. Так, Виет для обозначения Неизвестного числа применял букву N (Numerus-число), для квадрата и куба неизвестного буквы Q (Quadratus — квадрат) и C (Cubus — куб). Например, запись уравнения X в кубе, минус 8X в квадрате, плюс 16X, равно 40 у Виета выглядела бы так: 1C-8Q+16N aequ. 40 (aequali — равно). Виет делит изложение на две части: общие законы и их конкретно-числовые реализации. То есть он сначала решает задачи в общем виде, и только потом приводит числовые примеры. В общей части он обозначает буквами не только неизвестные, что уже встречалось ранее, но и все прочие параметры, для которых он придумал термин «коэффициенты» (буквально: содействующие). Виет использовал для этого только заглавные буквы: гласные для неизвестных, согласные для коэффициентов. Виет свободно применяет разнообразные алгебраические преобразования. Например, замену переменных или смену знака выражения при переносе его в другую часть уравнения.

Новая система позволила просто, ясно и компактно описать общие законы арифметики и алгоритмы. Символика Виета была сразу же оценена учёными разных стран, которые приступили к её совершенствованию. Диофант (не ранее III века н.э.) — единственный известный нам древнегреческий математик, который занимался алгеброй.

Он решал различные уравнения, особое внимание уделял неопределенным уравнениям, теория которых называется теперь «диофантовым анализом». У Диофанта была попытка ввести буквенную символику.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» и обозначает буквой т, квадрат неизвестной — символом дн (сокращение от дэнбмйт — «степень»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент

Эваримст Галуам (фр. Йvariste Galois;25 октября 1811, 25 октября 1811, Бур-ля-Рен, О-де-Сен, Франция — 31 мая 1832, ,Франция) — выдающийся французский математик, основатель современной высшей алгебры.

Эврист Галуа (1811 — 1832) — этот гениальный математик погиб на дуэли, подстроенной его врагами. В ночь перед дуэлью он написал письмо, в котором изложил свои результаты, давшей начало целой науке — «теории Галуа»

Нильс Хенрик Абель (1802 — 1829) внес важный вклад в теорию уравнений. В 1824 году он опубликовал доказательство неразрешимости в радикалах общего буквенного выражения пятой степени.

«Абель оставил математикам столь богатое наследие, что им будет чем заниматься в ближайшие 150 лет» (Шарль Эрмит). Нильс Хенрик Абель (норв. Niels Henrik Abel; 5 августа 1802, Фингё — 6 апреля 1829, Фроланд близ Арендаля) — знаменитый норвежский математик

1.Из истории возникновения уравнений.

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

2. Содержание и роль линии уравнений в современном школьном курсе математики

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.

Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:

1) уравнение как средство решения текстовых задач;

2) уравнение как особого рода формула, служащая в алгебре объектом изучения;

3) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Каждое из этих представлений оказалось в том или ином отношении полезным.

Таким образом, уравнение как общематематическое понятие много аспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно — методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики. Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений

в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики

Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k — натуральное число, большее 1) и ax=b.

Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

3. О трактовке понятия уравнения.

Понятие уравнения относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое с формальной точки зрения, и доступное для учащихся, приступающих к овладению школьным курсом алгебры.

Логико-математическое определение уравнения можно привести в такой форме: пусть на множестве М зафиксирован набор алгебраических операций, х — переменная на М; тогда уравнением на множестве М относительно х называется предикат вида а(х)=b (х), где а(х) и b(х)-термы относительно заданных операций, в запись которых входит символ х. Аналогично определяется уравнение от двух переменных и т. д.

Принятым в логике терминам «терм» и «предикат» соответствуют термины школьной математики «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению следующее определение: «Предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной, называется уравнением»

Анализируя приведенное математическое определение уравнения, можно выделить в нем два компонента. Первый состоит в том, что уравнение — это особого рода предикат. Второй уточняет, какого именно рода: это равенство, соединяющее два терма, причем термы также имеют определенный специальный вид. При изучении материала, относящегося к линии уравнений и неравенств, оба компонента играют значительную роль.

Первый — смысловой компонент, важен прежде всего для уяснения понятия корня уравнения. Кроме того, смысловой компонент почти всегда используется при обосновании корректности того или иного преобразования уравнения.

Второй компонент относится к формальным особенностям записи, изображающей уравнение. Назовем этот компонент знаковым. Он важен в случаях, когда запись уравнения подвергается различным преобразованиям: зачастую такие преобразования производятся чисто механически, без обращения к их смыслу.

Возможность использования в школьном обучении подхода к понятию уравнения, включающего явно упоминание о предложении с переменной, зависит от присутствия этого термина и терминов «истина», «ложь» в обязательном материале курса математики. Если их нет, то привести подобное определение невозможно. В этом случае смысловой компонент понятия уравнения переходит в определение другого понятия, тесно связанного с понятием уравнения, — корня уравнения. Получается система из двух терминов: термин «уравнение» несет в себе признаки знакового компонента, а термин «корень уравнения» учитывает смысловой компонент. Такое определение приведено, например, в учебнике Колмогорова А. Н.

Часто, особенно в начале систематического курса алгебры, понятие уравнения вводится посредством выделения его из алгебраического метода решения задач. В этом случае независимо от того, каков текст определения, существенным оказывается подход к понятию уравнения, при котором оно представляет косвенную форму задания некоторого неизвестного числа, имеющего в соответствии с сюжетом задачи конкретную интерпретацию. Например, понятие уравнения вводится на материале текстовой задачи: «Конверт с новогодней открыткой стоит 170сум. Конверт дешевле открытки на 70 сумк. Найти стоимость открытки». Переход к определению уравнения осуществляется на основе анализа некоторых формальных особенностей записи: х+(х-70)= 170, выражающей содержание данной задачи в алгебраической форме. С помощью этого же сюжета вводится и понятие корня уравнения. Вот эти определения: «Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Корнем уравнения называется то значение неизвестного, при котором это уравнение обращается в верное равенство». Указанный способ введения понятия уравнения соответствует еще одному компоненту понятия уравнения — прикладному.

Еще один подход к определению понятия уравнения получается при сопоставлении области определения уравнения и множества его корней. Обычно множество корней уравнения — собственное подмножество его области определения. С другой стороны, при решении уравнений приходится использовать преобразования, которые опираются на тождества, т. е. на равенства, истинные на всей области определения. Выделенное здесь противопоставление тождества и уравнения может быть положено в основу определения уравнения: «Буквенное равенство, которое не обязательно превращается в верное численное равенство при допустимых наборах букв, называется уравнением»

Формирование понятия уравнения требует использования еще одного термина: «решить уравнение». Различные варианты его определения отличаются друг от друга, по существу, только наличием или отсутствием в них термина «множество».

Таким образом, при освоении понятия уравнения необходимо использовать термины «уравнение», «корень уравнения», «что значит решить уравнение». При этом наряду с компонентами понятия уравнения, входящими в текст определения, надо включать и все другие его компоненты по мере развертывания материала данной линии.

В определении понятия уравнения используется один из двух терминов: «переменная» или «неизвестное». Различие между ними состоит в том, что переменная пробегает ряд значений, не выделяя ни одного из них специально, а неизвестное представляет собой буквенное обозначение конкретного числа (поэтому этим термином удобно пользоваться при составлении уравнений по текстовым задачам). Вопросы, связанные с выбором одного их этих терминов для использования в школьной практике, в настоящее время еще нельзя считать окончательно решенными. Выбор того или иного из них влечет определенные различия в развертывании содержания линии уравнений и неравенств. Так, с термином «переменная» связана операция подстановки числа вместо буквы, поэтому в уравнение а(х) = b(х) можно подставлять вместо х конкретные числа и находить среди них корни. Термин же «неизвестное» обозначает фиксированное число; подставлять число на место буквы, обозначающей неизвестное, поэтому нелогично. Нахождение корней уравнения а(х) = b(х) с этой точки зрения должно осуществляться с помощью действий, при которых это равенство рассматривают как верное и пытаются привести его к виду х = х, где х — числовое выражение.

При описании методики мы будем пользоваться термином «неизвестное», который ближе, чем «переменная», связан с алгебраическим методом решения текстовых задач и тем самым с прикладной направленностью линии уравнений и неравенств.

Глава 2. Решения уравнений и способы их упрощения

Наука математика возникла на первых этапах развития человечества из его практических нужд и творческих потребностей. Герман Вейль писал: «Математика играет весьма существенную роль в формировании нашего духовного облика. Занятие математикой — подобно мифотворчеству, литературе или музыке — это одна из наиболее присущих человеку областей и его творческой деятельности, в которой проявляется его человеческая сущность, стремление к интеллектуальной сфере жизни, являющейся одним из проявлений мировой гармонии».

В настоящее время математика достигла своего расцвета, она является основой большинства современных наук, а ее приложения используются во всех областях человеческой деятельности.

Большим значением в практической математике является метод уравнений. С их помощью решаются множество различных задач смежных дисциплин и задач прикладного характера (экономические, транспортные, биохимические, астрономические, географические и многие другие)

Чтобы решить уравнение нужно совершить ряд алгебраических преобразований. В математике существует множество задач, которые решаются с помощью уравнений. Чтобы решить эти задачи, мы вспоминаем слова великого Ньютона, задачу нужно перевести с родного языка на язык алгебры.

Используя данный способ, мы сможем легко и быстро решить любую, на первый взгляд сколь угодно сложную, задачу.

Опираясь на данное изложение, мы хотели бы сказать, что современный мир — мир развития науки и техники, невозможен без знания и умения решать уравнения.

Уравнением с одним неизвестным называется запись вида, А (х)=В (х) — выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные, называемые параметрами.

Областью определения уравнения (иногда говорят — область допустимых значений неизвестного) называется множество всех значений х, при которых определены обе части уравнения.

Корнем или решением, уравнения называется значение неизвестного, при подстановке которого в уравнении получается верное числовое равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.

Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейные и квадратные уравнения, а также уравнения вида f (х)=а, где f — одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Например, корень уравнения х 3 =а равен, корень уравнения log 3х = а есть 3 а , а уравнение cos х = а решается по формуле х= arcos, а + 2Пп, где п=о, 1, 2,…Существует формула и для кубического уравнения, но его к простейшим не относят.

Так вот, главная задача при решении любого уравнения — свести его к простейшим.

Два основных способа упрощения уравнений — это замена переменной и разложение на множители.

Например, биквадратное уравнение х 4 +ах 2 +b=0 сводится к квадратному заменой y=х 2 , а тригонометрическое уравнение 2cos 2 х +cos х — 1= 0 — заменой y= cos х. вообще, если вы сумели записать уравнение в виде F (f (x))=0, сделайте замену y=f (x). Решить два уравнения, f (y)=0 и f (x)=y, почти всегда проще, чем одно данное.

Разложить уравнение на множители — значит представить его в виде f (x) . g (x)=0. Такое уравнение можно заменить совокупностью двух уравнений: f (x)=0 и g (x)=0. Множеством решений исходного уравнения будет объединение множеств решений этих двух более простых. Правда, здесь спрятана и одна из ловушек. При замене одного уравнения двумя может расшириться область определения задачи: первое уравнение определено на пересечении областей определения f и g, а совокупность двух уравнений — на объединении. Так, уравнение (х+1)=0 имеет только один корень (х=0), совокупность же уравнений =0 и х+1=0 — два (х=0 и х= -1).

Один корень легко угадать: х= -1.

Как найти остальные? Можно доказать, что если х0 — корень многочлена P (х), то это многочлен делится на х — х0, т. е.разлагается на множители, один из которых х — х0. Выполним это разложение — вынесем из левой части множитель х+1:

х 2 — 3х — 2=х 3 +х 2 — х 2 — 3х — 2= х 2 (х+1) — (х 2 +х) — 2х — 2= (х+1) (х 2 -х -2).

Обратим внимание на используемый при этом прием — прибавление и вычитание одного и того же выражения (…=х 2 — х…). Этот нехитрый, но очень полезный прием носит шутливое название «метод Тараса Бульбы» (вспомним: «Я тебя породил, я тебя и убью!»). Ну, а дальше остается решить квадратное уравнение.

Таковы главные способы упрощения. Однако догадаться какую именно замену следует применить или как разложить на множители конкретное уравнение, порой бывает очень трудно. Успех здесь зависит от знания стандартных формул, опыта, смекалки и в большой мере — от удачи.

Глава 3. Использование уравнений при решении задач

Язык алгебры — уравнения. «Чтобы решить вопрос, относящийся к числам или к отвлеченным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий Ньютон в своем учебнике алгебры, озаглавленном «Всеобщая арифметика». Как именно выполняется такой перевод с родного языка на алгебраический, Ньютон показал на примерах. Вот один из них:

Системы линейных алгебраических уравнений. Однородные системы линейных алгебраических уравнений

Ещё в школе каждый из нас изучал уравнения и, наверняка, системы уравнений. Но не многие знают, что существует несколько способов их решения. Сегодня мы подробно разберём все методы решения системы линейных алгебраических уравнений, которые состоят более чем из двух равенств.

История

На сегодняшний день известно, что искусство решать уравнения и их системы зародилось ещё в Древнем Вавилоне и Египте. Однако равенства в их привычном для нас виде появились после возникновения знака равенства «=», который был введён в 1556 году английским математиком Рекордом. Кстати, этот знак был выбран не просто так: он означает два параллельных равных отрезка. И правда, лучшего примера равенства не придумать.

Основоположником современных буквенных обозначений неизвестных и знаков степеней является французский математик Франсуа Виет. Однако его обозначения значительно отличались от сегодняшних. Например, квадрат неизвестного числа он обозначал буквой Q (лат.»quadratus»), а куб — буквой C (лат. «cubus»). Эти обозначения сейчас кажутся неудобными, но тогда это был наиболее понятный способ записать системы линейных алгебраических уравнений.

Однако недостатком в тогдашних методах решения было то, что математики рассматривали только положительные корни. Возможно, это связано с тем, что отрицательные значения не имели никакого практического применения. Так или иначе, но первыми считать отрицательные корни начали именно итальянские математики Никколо Тарталья, Джероламо Кардано и Рафаэль Бомбелли в 16 веке. А современный вид, основной метод решения квадратных уравнений (через дискриминант) был создан только в 17 веке благодаря работам Декарта и Ньютона.

В середине 18 века швейцарский математик Габриэль Крамер нашёл новый способ для того, чтобы сделать решение систем линейных уравнений проще. Этот способ был впоследствии назван его именем и по сей день мы пользуемся им. Но о методе Крамера поговорим чуть позднее, а пока обсудим линейные уравнения и методы их решения отдельно от системы.

Линейные уравнения

Линейные уравнения — самые простые равенства с переменной (переменными). Их относят к алгебраическим. Линейные уравнения записывают в общем виде так: а1*x12*x2+. аn*xn=b. Представление их в этом виде нам понадобится при составлении систем и матриц далее.

Системы линейных алгебраических уравнений

Определение этого термина такое: это совокупность уравнений, которые имеют общие неизвестные величины и общее решение. Как правило, в школе все решали системы с двумя или даже тремя уравнениями. Но бывают системы с четырьмя и более составляющими. Давайте разберёмся сначала, как следует их записать так, чтобы в дальнейшем было удобно решать. Во-первых, системы линейных алгебраических уравнений будут выглядеть лучше, если все переменные будут записаны как x с соответствующим индексом: 1,2,3 и так далее. Во-вторых, следует привести все уравнения к каноническому виду: а1*x12*x2+. аn*xn=b.

После всех этих действий мы можем начать рассказывать, как находить решение систем линейных уравнений. Очень сильно для этого нам пригодятся матрицы.

Матрицы

Матрица — это таблица, которая состоит из строк и столбцов, а на их пересечении находятся её элементы. Это могут быть либо конкретные значения, либо переменные. Чаще всего, чтобы обозначить элементы, под ними расставляют нижние индексы (например, а11 или а23). Первый индекс означает номер строки, а второй — столбца. Над матрицами, как и над любым другим математическим элементом можно совершать различные операции. Таким образом, можно:

1) Вычитать и складывать одинаковые по размеру таблицы.

2) Умножать матрицу на какое-либо число или вектор.

3) Транспонировать: превращать строчки матрицы в столбцы, а столбцы — в строчки.

4) Умножать матрицы, если число строк одной их них равно количеству столбцов другой.

Подробнее обсудим все эти приёмы, так как они пригодятся нам в дальнейшем. Вычитание и сложение матриц происходит очень просто. Так как мы берём матрицы одинакового размера, то каждый элемент одной таблицы соотносится с каждым элементом другой. Таким образом складываем (вычитаем) два этих элемента (важно, чтобы они стояли на одинаковых местах в своих матрицах). При умножении матрицы на число или вектор необходимо просто умножить каждый элемент матрицы на это число (или вектор). Транспонирование — очень интересный процесс. Очень интересно иногда видеть его в реальной жизни, например, при смене ориентации планшета или телефона. Значки на рабочем столе представляют собой матрицу, а при перемене положения она транспонируется и становится шире, но уменьшается в высоте.

Разберём ещё такой процесс, как умножение матриц. Хоть он нам и не пригодится, но знать его будет всё равно полезно. Умножить две матрицы можно только при условии, что число столбцов одной таблицы равно числу строк другой. Теперь возьмём элементы строчки одной матрицы и элементы соответствующего столбца другой. Перемножим их друг на друга и затем сложим (то есть, например, произведение элементов a11 и а12 на b12 и b22 будет равно: а11*b12 + а12*b22). Таким образом, получается один элемент таблицы, и аналогичным методом она заполняется далее.

Теперь можем приступить к рассмотрению того, как решается система линейных уравнений.

Метод Гаусса

Этой тему начинают проходить еще в школе. Мы хорошо знаем понятие «система двух линейных уравнений» и умеем их решать. Но что делать, если число уравнений больше двух? В этом нам поможет метод Гаусса.

Конечно, этим методом удобно пользоваться, если сделать из системы матрицу. Но можно и не преобразовывать её и решать в чистом виде.

Итак, как решается этим методом система линейных уравнений Гаусса? Кстати, хоть этот способ и назван его именем, но открыли его ещё в древности. Гаусс предлагает следующее: проводить операции с уравнениями, чтобы в конце концов привести всю совокупность к ступенчатому виду. То есть, нужно, чтобы сверху вниз (если правильно расставить) от первого уравнения к последнему убывало по одному неизвестному. Иными словами, нужно сделать так, чтобы у нас получилось, скажем, три уравнения: в первом — три неизвестных, во втором — два, в третьем — одно. Тогда из последнего уравнения мы находим первое неизвестное, подставляем его значение во второе или первое уравнение, и далее находим оставшиеся две переменные.

Метод Крамера

Для освоения этого метода жизненно необходимо владеть навыками сложения, вычитания матриц, а также нужно уметь находить определители. Поэтому, если вы плохо всё это делаете или совсем не умеете, придется поучиться и потренироваться.

В чём суть этого метода, и как сделать так, чтобы получилась система линейных уравнений Крамера? Всё очень просто. Мы должны построить матрицу из численных (практически всегда) коэффициентов системы линейных алгебраических уравнений. Для этого просто берём числа перед неизвестными и расставляем в таблицу в том порядке, как они записаны в системе. Если перед числом стоит знак «-«, то записываем отрицательный коэффициент. Итак, мы составили первую матрицу из коэффициентов при неизвестных, не включая числа после знаков равенства (естественно, что уравнение должно быть приведено к каноническому виду, когда справа находится только число, а слева — все неизвестные с коэффициентами). Затем нужно составить ещё несколько матриц — по одной для каждой переменной. Для этого заменяем в первой матрице по очереди каждый столбец с коэффициентами столбцом чисел после знака равенства. Таким образом получаем несколько матриц и далее находим их определители.

После того как мы нашли определители, дело за малым. У нас есть начальная матрица, и есть несколько полученных матриц, которые соответствуют разным переменным. Чтобы получить решения системы, мы делим определитель полученной таблицы на определитель начальной таблицы. Полученное число и есть значение одной из переменных. Аналогично находим все неизвестные.

Другие методы

Существует ещё несколько методов для того, чтобы получить решение систем линейных уравнений. Например, так называемый метод Гаусса-Жордана, который применяется для нахождения решений системы квадратных уравнений и тоже связан с применением матриц. Существует также метод Якоби для решения системы линейных алгебраических уравнений. Он легче всех адаптируется для компьютера и применяется в вычислительной технике.

Сложные случаи

Сложность обычно возникает, если число уравнений меньше числа переменных. Тогда можно наверняка сказать, что, либо система несовместна (то есть не имеет корней), или количество её решений стремится к бесконечности. Если у нас второй случай — то нужно записать общее решение системы линейных уравнений. Оно будет содержать как минимум одну переменную.

Заключение

Вот мы и подошли к концу. Подведём итоги: мы разобрали, что такое система и матрица, научились находить общее решение системы линейных уравнений. Помимо этого рассмотрели другие варианты. Выяснили, как решается система линейных уравнений: метод Гаусса и метод Крамера. Поговорили о сложных случаях и других способах нахождения решений.

На самом деле эта тема гораздо более обширна, и если вы хотите лучше в ней разобраться, то советуем почитать больше специализированной литературы.


источники:

http://www.prodlenka.org/metodicheskie-razrabotki/338015-matematicheskie-uravnenija-i-ih-ispolzovanie-

http://fb.ru/article/267792/sistemyi-lineynyih-algebraicheskih-uravneniy-odnorodnyie-sistemyi-lineynyih-algebraicheskih-uravneniy