История решения уравнений высших степеней

Кто первым решил уравнение высшей степени

Решение уравнений высших степеней – история полная драматизма, разочарования и радости открытия. В течение почти 700 лет математики разных стран пытались найти приёмы решения уравнений третьей, четвёртой и более высоких степеней.

Со времен Омара Хайяма ученые средневековья почти 400 лет искали формулу для решения уравнений третьей степени.

Паоло Вальмес за свое открытие поплатился жизнью. Инквизиция отправила Вальмеса на костер. Однако трагедии и неудачи не смогли остановить прогресс.

Омар Хайям(1048 – 1123)

В своих математических трудах таджикский ученый описал все возможные виды уравнений третьей степени и рассмотрел геометрический способ их решения.

Николо Тарталья (1499 – 1557)

Решил уравнение в радикалах

Джероламо Кардано(1501 – 1576)

Обобщил приемы решения разных видов кубических уравнений. Независимо от Тартальи открыл формулу корней («формула Кардано»).

Франсуа Виет (1540 – 1603)

Установил, каким образом корни уравнения выражаются через коэффициенты. Поставил вопрос о существовании решения уравнений произвольных степеней в радикалах

Паоло Руффини (1765 – 1822)

Пытался доказать невозможность алгебраического решения общих уравнений выше четвертой степени.

Жозеф Луи Лагранж (1736 – 1813)

Искал признаки уравнений высших степеней, разрешимых в радикалах

Нильс Хенрик Абель (1802 – 1829)

Доказал неразрешимость в радикалах уравнения пятой степени и более высоких степеней в общем случае.

Эварист Галуа (1811 – 1832)

Нашел необходимое и достаточное условие, которому удовлетворяет алгебраическое уравнение, разрешимое в радикалах.

На сегодняшний день нет особых формул решения уравнений высших степеней (степень больше 3-х). Существует некоторое множество видов и методов решения этих уравнений. При разборе решений мне удалось систематизировать некоторый материал по теме учебного проекта.

История решения уравнений высших степеней

    Главная
  • Список секций
  • Математика
  • Методы решения алгебраических уравнений высших степеней

Методы решения алгебраических уравнений высших степеней

Автор работы награжден дипломом победителя II степени

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Актуальность проблемы : отсутствие навыков решения уравнений высших степеней различными способами у учащихся мешает им успешно подготовиться к итоговой аттестации по математике и математическим олимпиадам, обучению в профильном математическом классе. При подготовке к экзамену в 9 классе я встретилась с уравнениями степени выше второй. Было понятно, что решать уравнения необходимо разложением на множители, но не все уравнения удавалось решить. Поэтому, обучаясь уже в 10 классе, я решила исследовать какие еще существуют методы решения уравнения.

Гипотеза: Знание методов решения различных уравнений значительно упростит нахождение корней, а также сэкономить время при решении уравнений.

Объект исследования: уравнения высших степеней

Предмет исследования – способы решения уравнений высших степеней.

Методы исследования: теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов; анализ полученной информации; сравнение способов решения уравнений на удобство и рациональность.

Цель: Узнать какие методы решения высших степеней существуют; Научиться решать уравнения высших степеней различными способами.

Исследовать историю возникновения методов решений.

Найти различные методы и приёмы решения уравнений высших степеней

Практически выяснить, какой из способов более понятен для 9-ых классов.

Решение уравнений высших степеней – история полная драматизма, разочарования и радости открытия. В течение почти 700 лет математики разных стран пытались найти приёмы решения уравнений третьей, четвёртой и более высоких степеней.

Только в 11 веке таджикский поэт и ученый Омар Хаям впервые решил уравнение III степени. Установить, существует ли формула для нахождения корней любого уравнения, пытались многие. В конце 18 века французский ученый Луи Лагранж пытался доказать невозможность алгоритма общих уравнений, а вначале 19 века француз Галуа развил идею Лагранжа.

С тех пор математика пошла другим путем. Ученые стали искать другие методы решения уравнений высших степеней.

Из общих методов решения уравнений высших степеней, которые встречаются чаще всего, используют: метод разложения левой части уравнения на множители; метод замены переменной (метод введения новой переменной); графический способ. С этими методами мы знакомимся в 9 классе при изучении темы: «Целое уравнение и его корни». В учебнике Алгебра 9 (авторы Макарычев Ю.Н., Миндюк Н.Г и др) последних годов издания достаточно подробно рассматриваются основные методы решения уравнений высших степеней.

Рассмотрим некоторые из них.

Разложение многочлена на множители.

При разложении на множители многочлена степени выше второй не существует универсального метода решения.

Так одним из способов является способ группировки.

Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена. Чтобы разложить многочлен на множители способом группировки, нужно: Объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена. Вынести этот общий множитель за скобки.

Примеры решения уравнений способом группировки:

x⁴-5x³-20x²+4x²+100х-80=0 («искусственно» -16х 2 =-20x²+4x²)

x²(x²-20)-5x(x²-20)+4(x²-20)=0 (нужно догадаться как сгруппировать)

Еще один способ: по формулам сокращенного умножения

1. Квадрат суммы: (a + b) 2 = a 2 + 2ab + b 2

2. Квадрат разности: (a — b) 2 = a 2 — 2ab + b 2

3. Разность квадратов: а 2 — b 2 = (a — b) (a + b)

4. Кубсуммы : (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

5. Кубразности : (a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

6. Суммакубов : a 3 + b 3 = (a + b) (a 2 — ab + b 2 )

7. Разностькубов : a 3 — b 3 = (a — b) (a 2 + ab + b 2 )

Ответ: корней нет.

Метод введения новой переменной:

К квадратным уравнениям сводятся уравнения четвертой степени: ax 4 + bx 2 + c = 0, называемые биквадратными, причем, а ≠ 0. Достаточно положить в этом уравнении х 2 = y, следовательно, ay² + by + c = 0. Найдём корни полученного квадратного уравнения y1,2 =

заменим y на x и получим

Примеры решения уравнения методом введения новой переменной:

(x 2 +4x)(x 2 +4x-17)=-60

— 17t = -60
t 2 — 17t + 60 = 0

Но не всегда удается решить уравнения степени выше второй указанными методами.

Попробуем решить уравнение используя выше изложенные приёмы. НЕ УДАЕТСЯ.

В учебнике Ю.М. Колягин, М.В. Ткачева «Алгебра и начала анализа» для 10 класса сказано, что вычислять значения многочленов в математике приходится довольно часто и важно делать это как можно проще.

Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

Таким образом, мы фактически разложили левую часть уравнения на множители:

Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

Итак, данное уравнение имеет три корня:

Наиболее известный способ вычисления многочленов называется схемой Горнера в честь английского математика Уильяма Горнера (1786-1837).

Горнер Уильям Джордж (1786 — 1837) — английский математик. Родился в городе Бристоль в Англии.

Основные труды относятся к решению алгебраических уравнений. В 1819 году опубликовал способ приближённого вычисления действительных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII веке). Работа была напечатана в философских работах Королевского научного сообщества.

Схема Горнера – способ деления многочлена

на бином x−a . Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число a , взятое из бинома x−a :

Первую строку заполнили. Вторая заполняется по следующему правилу:

Научно-исследовательская работа по теме: « Уравнения высших степеней»

Практика олимпиад, выпускных и вступительных экзаменов по математике показывает, что довольно часто приходится сталкиваться с уравнениями высших степеней. Решение таких уравнений зачастую вызывает большие трудности. Не все уравнения удается решить. В школьных учебниках уравнение высшей степени – редкость. В данной работе представлены методы решения указанных уравнений.

Цели работы: Узнать какие методы решения высших степеней существуют; Научиться решать уравнения высших степеней различными способами.

Задачи:

1.Подобрать необходимую литературу

2.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

3.Проанализировать и систематизировать полученную информацию

4.Найти различные методы и приёмы решения уравнений высших степеней

5.Классифицировать исследуемые уравнения

6.Оформить работу в виде буклета

7.Создать электронную презентацию работы для представления собранного материала

Объект исследования: уравнения высших степеней

Просмотр содержимого документа
«Научно-исследовательская работа по теме: « Уравнения высших степеней»»

Муниципальное казенное общеобразовательное учреждение

«Богучарская средняя общеобразовательная школа № 1»

по теме: « Уравнения высших степеней»

Автор: Жуковская Татьяна Владимировна , 9 «Б» класс

Руководитель: Алабина Галина Юрьевна

Великие учёные, изучавшие уравнения высших степеней….……. 6

Виды уравнений высших степеней………………………………………. ….9

Методы решения высших степеней……………….………………..…………9

Решение уравнений разными способами..………………….……………. 10

Решение уравнений высших степеней – история полная драматизма, разочарования и радости открытия. В течение почти 700 лет математики разных стран пытались найти приёмы решения уравнений третьей, четвёртой и более высоких степеней.

Только в 11 веке таджикский поэт и ученый Омар Хаям впервые решил уравнение III степени. Установить, существует ли формула для нахождения корней любого уравнения, пытались многие. В конце 18 века французский ученый Луи Лагранж пытался доказать невозможность алгоритма общих уравнений, а вначале 19 века француз Галуа развил идею Лагранжа.

С тех пор математика пошла другим путем. Ученые стали искать другие методы решения уравнений высших степеней.

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Практика олимпиад, выпускных и вступительных экзаменов по математике показывает, что довольно часто приходится сталкиваться с уравнениями высших степеней. Решение таких уравнений зачастую вызывает большие трудности. Не все уравнения удается решить. В школьных учебниках уравнение высшей степени – редкость. Поэтому я выбрала эту тему для своей исследовательской работы.

Цели работы: Узнать какие методы решения высших степеней существуют; Научиться решать уравнения высших степеней различными способами.

1.Подобрать необходимую литературу

2.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

3.Проанализировать и систематизировать полученную информацию

4.Найти различные методы и приёмы решения уравнений высших степеней

5.Классифицировать исследуемые уравнения

6.Оформить работу в виде буклета

7.Создать электронную презентацию работы для представления собранного материала

Объект исследования: уравнения высших степеней

Методы исследования: изучение и анализ литературы, сравнение, обобщение, практический метод

Результат исследования: Я научилась решать возвратные и однородные уравнения,а также изучила теорему Безу и схему Горнера.

Гипотеза:Существует много различных видов и методов решения уравнений высших степеней, о которых не рассказывается в школьной программе 9 класса.

Великие учёные, изучавшие уравнения высших степеней

Омар Хайям (ок. 1048- ок. 1123)

Описал всевозможные виды уравнений третьей степени и рассмотрел сложные и красивые способы геометрических построений для отыскания их решения.

Никколо Тарталья (1499-1557)

Он вывел формулы для решения уравнений 3-ей степени, но своё открытие держал в тайне.

Обращался к Тарталье с просьбой сообщить ему формулу для решения кубических уравнений и обещал хранить её в секрете. Он не сдержал слово и опубликовал формулу, указав, что Тарталье принадлежит честь открытия «такого прекрасного и удивительного, превосходящего все таланты человеческого духа».

Нильс Хенрик Абель (1802-1829)

В 1826 году доказал, что нельзя вывести формулы для решения уравнений пятой степени и выше.

Этьен Безу (1730-1783)

Французский математик, член Парижской академии наук. Преподавал математику в Училище гардемаринов в 1763 и Королевском артиллерийском корпусе в 1768. Основные его работы относятся к алгебре (исследование систем алгебраических уравнений высших степеней, исключение неизвестных в таких системах и др.) Является автором шеститомного «Курса математики» (1764-1769).

Уильям Джордж Горнер (1786 – 1837)

Английский математик. Основные труды по теории алгебраических уравнений. С его именем связана (1819) схема Горнера деления многочлена на двучлен .

Виды уравнений высших степеней

Уравнения третьей степени

Уравнения четвёртой степени

Уравнения пятой степени

Способы решения уравнений высших степеней

Разложение многочлена на множители:

По формулам сокращенного умножения

По теореме Безу

Метод введения новой переменной

Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена. Чтобы разложить многочлен на множители способом группировки, нужно: Объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена. Вынести этот общий множитель за скобки.

Примеры решения уравнений способом группировки:

x-5=0 или x-4=0 или x+4=0

x-2=0 или x+2=0 или x-3=0

По формулам сокращенного умножения

1. Квадрат суммы: (a + b) 2 = a 2 + 2ab + b 2

2. Квадрат разности: (a — b) 2 = a 2 — 2ab + b 2

3. Разность квадратов: а 2 — b 2 = (a — b) (a + b)

4. Куб суммы: (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

5. Куб разности: (a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

6. Сумма кубов: a 3 + b 3 = (a + b) (a 2 — ab + b 2 )

7. Разность кубов: a 3 — b 3 = (a — b) (a 2 + ab + b 2 )

Примеры решения уравнений с помощью формул сокращённого умножения:

x=1 D=16-64=-48-корней нет

+18a⁴+108a²+216=0


источники:

http://school-science.ru/12/7/47404

http://multiurok.ru/files/nauchno-issliedovatiel-skaia-rabota-po-tiemie-urav.html