Iz 1 i решите уравнение

Комплексные числа по-шагам

Результат

Примеры комплексных выражений

  • Деление комплексных чисел
  • Умножение комплексных чисел
  • Комплексные уравнения
  • Возведение комплексного числа в степень
  • Корень из комплексного числа

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Онлайн калькулятор. Действия над комплексными числами.

Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам.

Также универсальный калькулятор умеет производить действия с комплексными числами (сложение, вычитание, умножение и пр).

Онлайн калькулятор комплексных чисел

Разделитель системы уравнений

Натуральный логарифм и предел:

Пояснения к калькулятору

  1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
  2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
  3. ⌫ — удалить в поле ввода символ слева от курсора.
  4. C — очистить поле ввода.
  5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
  6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
  7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .

Действия над комплексными числами

Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Калькулятор для решения комплексных чисел.
Сумма, разность, произведение и частное комплексных чисел.
Вычислить n-ую степень и корень n-ой степени.

С помощью данного калькулятора вы можете сложить, вычесть, умножить, и разделить комплексные числа.
Программа решения комплексных чисел не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Комплексное число состоит из двух частей — действительной и мнимой.
Первое поле ввода — для действительной части, второе — для мнимой.
Для правильного ввода комплексного числа нужно ввести как минимум одну часть — действительную или мнимую.

Числа в действительную или мнимую части можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так + i

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: + i
Результат: \( -\frac<2> <3>— \frac<7> <5>\cdot i \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: + i
Результат: \( -1\frac<2> <3>+ 5\frac<8> <3>\cdot i \)

Введите действительную и мнимую части чисел \( z_1 \) и \( z_2 \).
У каждого числа нужно ввести как минимум одну часть — действительную или мнимую.

Вычислить сумму, разность, произведение и частное

Немного теории.

Понятие комплексного числа

Определение.
Комплексными числами называют выражения вида \(а + bi\) где \(a\) и \(a\) — действительные числа, а \(i\) — некоторый символ, для которого по определению выполняется равенство \( i^2=-1 \).

Название «комплексные» происходит от слова «составные» — по виду выражения \(а + bi\). Число \(а\) называется действительной частью комплексного числа \(а + bi\), а число \(b\) — его мнимой частью. Число \(i\) называется мнимой единицей.
Например, действительная часть комплексного числа \(2-3i\) равна \(2\), мнимая часть равна \(-3\).
Запись комплексного числа в виде \(а + bi\) называют алгебраической формой комплексного числа.

Равенство комплексных чисел

Определение.
Два комплексных числа \(a + bi\) и \(c + di\) называются равными тогда и только тогда, когда \(a =c\) и \(b =d\), т. е. когда равны их действительные и мнимые части.

Сложение и умножение комплексных чисел

Операции сложения и умножения двух комплексных чисел определяются следующим образом.

Определения.
Суммой двух комплексных чисел \(a+ bi\) и \(c + di\) называется комплексное число \( (a+c) + (b+d)i \), т.е. \( (a + bi) + (c + di) = (a + c) + (b + d)i \).

Произведением двух комплексных чисел \(a + bi\) и \(c + di\) называется комплексное число \( (ac — bd) + (ad + bc)i \), т. е.
\( (a + bi)(с + di) = (aс-bd) + (ad + bc)i \).

Из двух предыдущих формул следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами. Поэтому нет необходимости запоминать эти формулы, их можно получить по обычным правилам алгебры, считая, что \( i^2=-1 \).

Основные свойства сложения и умножения комплексных чисел

1. Переместительное свойство
\( z_1 + z_2 = z_2 + z_1 \),
\( z_1z_2 = z_2z_1 \)

2. Сочетательное свойство
\( (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) \),
\( (z_1z_2)z_3 = z_1(z_2z_3) \)

3. Распределительное свойство
\( z_1(z_2 + z_3) = z_1z_2 + z_1z_3 \)

Комплексно сопряженные числа

Определение.
Сопряженным с числом \(z = a + bi\) называется комплексное число \(a -bi\), которое обозначается \( \overline \), т. е.
\( \overline = \overline = a-bi \)

Например :
\( \overline <3 + 4i>= 3-4i \),
\( \overline <-2-5i>= -2+5i \),
\( \overline = -i \)

Отметим, что \( \overline = a+bi \), поэтому для любого комплексного числа \(z\) имеет место равенство
\( \overline<(\overline)> = z \)
Равенство \( \overline = z \) справедливо тогда и только тогда, когда \(z\) — действительное число.

Модуль комплексного числа

Определение.
Модулем комплексного числа \(z = a + bi\) называется число \( \sqrt \), т.е.
\( |z|=|a+bi| = \sqrt \)

Из данной формулы следует, что \( |z| \geqslant 0 \) для любого комплексного числа \(z\), причем \(|z|=0\) тогда и только тогда, когда \(z=0\), т.е. когда \(a=0\) и \(b=0\).

Вычитание комплексных чисел

Определение.
Комплексное число \( (-1)z \) называется противоположным комплексному числу \(z\) и обозначается \(-z\).
Если \(z = a + bi\), то \(-z = -a — bi\)
Например : \( -(3-5i) = -3+5i \)
Для любого комплексного числа \(z\) выполняется равенство
\( z+(-z) = 0 \).

Вычитание комплексных чисел вводится как операция, обратная сложению: для любых комплексных чисел \(z_1\) и \(z_2\) существует, и притом только одно, число \(z\), такое, что
\( z + z_2 = z_1 \),
т.е. это уравнение имеет только один корень.

Деление комплексных чисел

Деление комплексных чисел вводится как операция, обратная умножению: для любых комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) существует, и притом только одно, число \( z \), такое, что \( z \cdot z_2=z_1 \) т.е. это уравнение относительно z имеет только один корень, который называется частным чисел \( z_1 \) и \( z_2 \) и обозначается \( z_1:z_2 \), или \( \frac \), т.е. \( z=z_1:z_2 = \frac \)

Комплексное число нельзя делить на ноль.

Частное комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) можно найти по формуле
$$ \frac = \frac> <|z_2|^2>$$

Каждое комплексное число \(z\), не равное нулю, имеет обратное ему число \(w\), такое, что \(z \cdot w = 1\), где
$$ w= \frac<1> = \frac-\fraci $$

Если \( z_1 = a_1 + b_1i \; , \; z_2 = a_2 + b_2i \), то формулу частного комплексных чисел можно представить в виде
$$ \frac = \frac= \frac<(a_1+b_1i)(a_2-b_2i)> = \frac+ \fraci $$

Геометрическая интерпретация комплексного числа.
Комплексная плоскость

Действительные числа геометрически изображаются точками числовой прямой. Комплексное число \(a + bi\) можно рассматривать как пару действительных чисел \((a; b)\). Поэтому естественно комплексные числа изображать точками плоскости.

Пусть на плоскости задана прямоугольная система координат. Комплексное число \(z = a + bi\) изображается точкой плоскости с координатами \((a; b)\), и эта точка обозначается той же буквой \(z\).

Такое соответствие между комплексными числами и точками плоскости взаимно однозначно: каждому комплексному числу \(a + bi\) соответствует одна точка плоскости с координатами \((a; b)\) и, наоборот, каждой точке плоскости с координатами \((a; b)\) соответствует одно комплексное число \(a + bi\). Поэтому слова «комплексное число» и «точка плоскости» часто употребляются как синонимы. Так, вместо слов «точка, изображающая число \(1 + i\)» говорят «точка \(1 + i\)». Можно, например, сказать «треугольник с вершинами в точках \(i, \; 1+i, \; -i \)».

При такой интерпретации действительные числа \(a\), т.е. комплексные числа \(a+0i\), изображаются точками с координатами \((a; 0)\), т.е. точками оси абсцисс. Поэтому ось абсцисс называют действительной осью.
Чисто мнимые числа \(bi = 0+bi\) изображаются точками с координатами \((0; b)\), т.е. точками оси ординат, поэтому ось ординат называют мнимой осью. При этом точка с координатами \((0; b)\) обозначается \(bi\).
Например, точка \((0; 1)\) обозначается \(i\), точка \((0; -1)\) — это \(-i\) , точка \((0; 2)\) — это точка \(2i\).
Начало координат — это точка \(O\).
Плоскость, на которой изображаются комплексные числа, называют комплексной плоскостью.

Отметим, что точки \(z\) и \(-z\) симметричны относительно точки \(O\) (начала координат), а точки \( z \) и \( \overline \) симметричны относительно действительной оси.

Комплексное число \(z = a+bi\) можно изображать вектором с началом в точке \(O\) и концом в точке \(z\). Этот вектор будем обозначать той же буквой \(z\), длина этого вектора равна \(|z|\).

Число \( z_1 + z_2 \) изображается вектором, построенным по правилу сложения векторов \( z_1 \) и \( z_2 \) а вектор \( z_1 — z_2 \) можно построить как сумму векторов \( z_1 \) и \( -z_2 \).

Геометрический смысл модуля комплексного числа

Выясним геометрический смысл модуля комплексного числа \(|z|\). Пусть \(z = a+bi\). Тогда по определению модуля \( |z|= \sqrt \). Это означает, что \(|z|\) — расстояние от точки \(O\) до точки \(z\).

Например, равенство \(|z| = 4\) означает, что расстояние от точки \(O\) до точки \(z\) равно \(4\). Поэтому множество всех точек \(z\), удовлетворяющих равенству \(|z| = 4\), является окружностью с центром в точке \(O\) радиуса \(4\). Уравнение \(|z| = R\) является уравнением окружности с центром в точке \(O\) радиуса \(R\), где \(R\) — заданное положительное число.

Геометрический смысл модуля разности комплексных чисел

Выясним геометрический смысл модуля разности двух комплексных чисел, т.е. \( |z_1-z_2| \).
Пусть \( z_1 = a_1+b_1i, \; z_2 = a_2+b_2i \)
Тогда \( |z_1-z_2| = |(a_1-a_2) + (b_1-b_2)i| = \sqrt <(a_1+a_2)^2 + (b_1+b_2)^2>\)

Из курса геометрии известно, что это число равно расстоянию между точками с координатами \( (a_1;b_1) \) и \( (a_2;b_2) \).

Итак, \( |z_1-z_2| \) — расстояние между точками \( z_1 \) и \( z_2 \).

Тригонометрическая форма комплексного числа. Аргумент комплексного числа

Определение
Аргумент комплексного числа \( z \neq 0 \) — это угол \( \varphi \) между положительным направлением действительной оси и вектором \(Oz\). Этот угол считается положительным, если отсчет ведется против часовой стрелки, и отрицательным при отсчете по часовой стрелке.

Связь между действительной и мнимой частями комплексного числа \(z = a + bi\), его модулем \(r=|z|\) и аргументом \( \varphi \) выражается следующими формулами:
\( \left\< \begin a=r \cos \varphi \\ b=r \sin \varphi \end \qquad (1) \right. \)

Аргумент комплексного числа \(z = a+bi\) ( \( z \neq 0 \) ) можно найти, решив систему (2). Эта система имеет бесконечно много решений вида \( \varphi =\varphi_0+2k\pi \), где \( k\in\mathbb , \;\; \varphi_0 \) — одно из решений системы (1), т.е. аргумент комплексного числа определяется неоднозначно.

Для нахождения аргумента комплексного числа \(z = a+bi\) ( \( z\neq 0 \) ) можно воспользоваться формулой
\( tg \varphi = \large \frac \normalsize \qquad (3) \)

При решении уравнения (3) нужно учитывать, в какой четверти находится точка \(z = a+bi\).

Запись комплексного числа в тригонометрической форме

Из равенства (1) следует, что любое комплексное число \(z = a+bi\), где \( z\neq 0 \), представляется в виде
\( z = r(\cos\varphi +i\sin\varphi ) \qquad (4) \)
где \( r=|z|=\sqrt \) — модуль комплексного числа \(z\), \( \varphi \) — его аргумент. Запись комплексного числа в виде (4), где \(r>0\), называют тригонометрической формой комплексного числа \(z\).

Умножение и деление комплексных чисел, записанных в тригонометрической форме

С помощью тригонометрической формы записи комплексных чисел удобно находить произведение и частное комплексных чисел \(z_1\) и \(z_2\). Если два комплексных числа записаны в тригонометрической форме :
\( z_1 = r_1(\cos\varphi_1 +i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 +i\sin\varphi_2) \) то произведение этих комплексных чисел можно найти по формуле:
\( z_1z_2 = r_1r_2(\cos(\varphi_1+\varphi_2) +i\sin(\varphi_1+\varphi_2)) \)

Из этой формулы следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

Формула для нахождения частного комплексных чисел:
$$ \frac = \frac(\cos(\varphi_1-\varphi_2) +i\sin(\varphi_1-\varphi_2)) $$

Из этой формулы следует, что модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частного.

Формула Муавра

Для любого \( n \in \mathbb \) справедлива формула
$$ z^n = r^n(\cos \varphi + i \sin \varphi)^n = r^n(\cos (n\varphi) + i \sin (n\varphi) ) $$
которую называют формулой Муавра.


источники:

http://findhow.org/4388-matematicheskij-kalkulyator.html?op=complex-number

http://www.math-solution.ru/math-task/complex-num