Из этана получить ацетилен уравнение

Этан: способы получения и свойства

Этан C2H6 – это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд этана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение этана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода

Изомерия этана

Для этана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства этана

Этан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для этана характерны радикальные реакции.

Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Этан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании этана сначала образуется хлорэтан:

Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана, тетрахлорметана и т.д.

1.2. Нитрование этана

Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в этане замещается на нитрогруппу NO2.

Например. При нитровании этана образуется преимущественно нитроэтан:

2. Дегидрирование этана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

3. Окисление этана

Этан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение этана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.

Например , хлорметан реагирует с натрием с образованием этана:

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:

CH3–CH2 –COONa + NaOH CH3–CH2 –H + Na2CO3

3. Гидрирование алкенов и алкинов

Этан можно получить из этилена или ацетилена:

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить этан:

5. Получение этана в промышленности

В промышленности этан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

№16. Составьте уравнения реакций, при помощи которых можно осуществить следующие превращения:

а) Этан из метана можно получить в две стадии. При хлорировании метана образуется хлорметан:

При взаимодействии хлорметана с натрием образуется этан (реакция Вюрца):

Из этана в две стадии можно получить этанол. При хлорировании этана образуется хлорэтан:

При действии на хлорэтан водного раствора щелочи происходит замещение атома хлора на гидроксильную группу и образуется этанол.

Этан из этанола можно получить также в две стадии. При нагревании этанола с серной кислотой происходит дегидратация и образуется этилен:

При гидрировании этилена над катализатором образуется этан:

б) При нагревании этанола с серной кислотой происходит дегидратация и образуется этилен:

При гидрировании этилена над катализатором образуется этан:

При хлорировании этана образуется хлорэтан:

Из хлорэтана в две стадии можно получить уксусный альдегид. При действии на хлорэтан водного раствора щелочи образуется этанол.

При нагревании этанол окисляется оксидом меди в уксусный альдегид:

в) Бутадиен можно получить непосредственно из этилового спирта при нагревании в присутствии катализатора, при этом происходит одновременное дегидрирование (отщепление водорода) и дегидратация (отщепление воды):

г) При сильном нагревании карбоната кальция с углеродом образуется карбид кальция:

При действии на карбид кальция водой получается ацетилен:

Этиловый спирт из ацетилена можно получить в две стадии. При гидрировании ацетилена в присутствии катализатора образуется этилен:

При присоединении к этилену воды в присутствии кислот образуется этиловый спирт.

При обработке этилового спирта хлороводородом в присутствии серной кислоты образуется хлорэтан (этилхлорид).

При действии на этилхлорид спиртового раствора щелочи при нагревании происходит отщепление хлороводорода и образуется этилен.

При взаимодействии предельных углеводородов с галогенами образуются галогенопроизводные углеводородов:

Решебник по химии за 10 класс (Г.Е.Рудзитис, Ф.Г.Фельдман, 2000 год),
задача №16
к главе «Глава VII. Спирты и фенолы. §1 (стр. 85) Вопросы».

Как из этана получить ацетилен уравнение реакции. Как получить этан из ацетилена. Примеры решения задач

Ацетилен относится к непредельным углеводородам. Его химические свойства определяются тройной связью. Он способен вступать в реакции окисления, замещения, присоединения и полимеризации. Этан – предельный углеводород, для которого характеры реакции замещения по радикальному типу, дегидрирования и окисления. При температуре около 600 градусов по Цельсию он разлагается на водород и этен.

Вам понадобится

  • — химическое оборудование;
  • — катализаторы;
  • — бромная вода.

Инструкция

  • Ацетилен, этилен и этан — в обычных условиях бесцветные горючие газы. Поэтому сначала ознакомьтесь с техникой безопасности при работе с летучими веществами. Не забудь повторить строение молекул и химические свойства алкинов (непредельных углеводородов), алкенов и алканов. Посмотрите, чем они похожи и чем различаются. Для получения этана вам потребуется ацетилен и водород.
  • Чтобы произвести ацетилен в лабораторных условиях, проведите разложение карбида кальция CaC2. Его можете взять готовым или же получить путем спекания негашеной извести с коксом: СаО+3C=CaC2+CO — процесс протекает при температуре 2500°C, СаС2+2Н2O=C2H2+Са(ОН)2.Проведите качественную реакцию на ацетилен — обесцвечивание бромной воды или раствора перманганата калия.
  • Получить водород вы сможете несколькими способами: — взаимодействием металлов с кислотой: Zn+2 НСl=ZnСl2+Н2- во время реакция щелочи с металлами, гидроксиды которых обладают амфотерными свойствами: Zn+2 NaОН+2 Н2О=Na2+Н2- электролизом воды, для увеличения электропроводности которой добавляют щелочь. При этом на катоде образуется водород, а на аноде – кислород: 2 Н2О=2 Н2+O2.
  • Для получения из ацетилена этана необходимо провести реакцию присоединения водорода (гидрирование), учитывая при этом свойства химических связей: сначала из ацетилена получается этилен, а затем при дальнейшем гидрировании – этан. Для наглядного выражения процессов составьте и запишите уравнения реакций:C2H2+H2=C2H4C2H4+H2=C2H6Реакция гидрирования протекает при комнатной температуре в присутствии катализаторов – мелко раздробленного палладия, платины или никеля.

Ацетилен относится к непредельным углеводородам. Его химические свойства определяются тройной связью. Он способен вступать в реакции окисления, замещения, присоединения и полимеризации. Этан – предельный углеводород, для которого характеры реакции замещения по радикальному типу, дегидрирования и окисления. При температуре около 600 градусов по Цельсию он разлагается на водород и этен.

Вам понадобится

  • — химическое оборудование;
  • — катализаторы;
  • — бромная вода.

Инструкция

Ацетилен, этилен и этан — в обычных условиях бесцветные горючие газы. Поэтому сначала ознакомьтесь с техникой безопасности при работе с летучими веществами. Не забудь повторить строение молекул и химические свойства алкинов (непредельных углеводородов), алкенов и алканов. Посмотрите, чем они похожи и чем различаются. Для получения этана вам потребуется ацетилен и водород.

Чтобы произвести ацетилен в лабораторных условиях, проведите разложение карбида кальция CaC2. Его можете взять готовым или же получить путем спекания негашеной извести с коксом: СаО+3C=CaC2+CO — процесс протекает при температуре 2500°C, СаС2+2Н2O=C2H2+Са(ОН)2.Проведите качественную реакцию на ацетилен — обесцвечивание бромной воды или раствора перманганата калия.

Получить водород вы сможете несколькими способами: — взаимодействием металлов с кислотой: Zn+2 НСl=ZnСl2+Н2?- во время реакция щелочи с металлами, гидроксиды которых обладают амфотерными свойствами: Zn+2 NaОН+2 Н2О=Na2+Н2?- электролизом воды, для увеличения электропроводности которой добавляют щелочь. При этом на катоде образуется водород, а на аноде – кислород: 2 Н2О=2 Н2+O2.

Для получения из ацетилена этана необходимо провести реакцию присоединения водорода (гидрирование), учитывая при этом свойства химических связей: сначала из ацетилена получается этилен, а затем при дальнейшем гидрировании – этан. Для наглядного выражения процессов составьте и запишите уравнения реакций:C2H2+H2=C2H4C2H4+H2=C2H6Реакция гидрирования протекает при комнатной температуре в присутствии катализаторов – мелко раздробленного палладия, платины или никеля.

Алкины — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна тройная связь.

Углеводороды ряда ацетилена являются еще более непредельными соединениями, чем соответствующие им алкены (с тем же числом углеродных атомов). Это видно из сравнения числа атомов водорода в ряду:

этан этилен ацетилен

Алкины образуют свой гомологический ряд с общей формулой, как и у диеновых углеводородов СnH2n-2

1. Строение алкинов

Первым и основным представителем гомологического ряда алкинов является ацетилен (этин) С2Н2. Строение его молекулы выражается формулами:

По названию первого представителя этого ряда — ацетилена — эти непредельные углеводороды называют ацетиленовыми.

В алкинах атомы углерода находятся в третьем валентном состоянии (sp-гибридизация). В этом случае между углеродными атомами возникает тройная связь, состоящая из одной s- и двух p-связей. Длина тройной связи равна 0,12 нм, а энергия ее образования составляет 830 кДж/моль. Модели пространственного строения ацетилена представлены на рис. 1.

Рис.1. Модели пространственного строения молекулы ацетилена:

а — тетраэдрическая; б — шаростержневая; в -по Бриглебу

2. Номенклатура и изомерия

Номенклатура. По систематической номенклатуре ацетиленовые углеводороды называют, заменяя в алканах суффикс -ан на суффикс -ин. В состав главной цепи обязательно включают тройную связь, которая определяет начало нумерации. Если молекула содержит одновременно и двойную, и тройную связи, то предпочтение в нумерации отдают двойной связи:

Н-С?С-СН2-СН3 Н3С-С?С-СН3 Н2С=С-СН2-С?СН

бутин-1 бутин-2 2-метилпентен-1-ин-4

По рациональной номенклатуре алкиновые соединения называют, как производные ацетилена.

Непредельные (алкиновые) радикалы имеют тривиальные или систематические названия:

Изомерия. Изомерия алкиновых углеводородов (как и алкеновых) определяется строением цепи и положением в ней кратной (тройной) связи:

Н-С?С-СН-СН3 Н-С?С-СН2-СН2-СН3 Н3С-С=С-СН2-СН3

3-метилбутин-1 пентин-1 пентин-2

3. Получение алкинов

Ацетилен в промышленности и в лаборатории можно получать следующими способами:

1. Высокотемпературным разложением (крекинг) природного газа — метана:

2СН4 1500°C® НС?СН + 3Н2

С2Н6 1200°C® НС?СН + 2Н2

2. Разложением водой карбида кальция СаС2, который получают спеканием негашеной извести СаО с коксом:

СаО + 3C 2500°C® CaC2 + CO

СаС2 + 2Н2O ® НС?СН + Са(ОН)2

3. В лаборатории производные ацитилена можно синтезировать из дигалогенопроизводных, содержащих два атома галогена при одном или соседних углеродных атомах, действием спиртового раствора щелочи:

Н3С-СН-СН-СН3 + 2КОН ® Н3С-С?С-СН3 + 2KBr + 2Н2О

4. Физические и химические свойства

физические свойства. Ацетиленовые углеводороды, содержащие в молекуле от двух до четырех углеродных атомов (при обычных условиях), — газы, начиная с C5H8 — жидкости, а высшие алкины (с С16Н30 и выше) — твердые вещества. Физические свойства некоторых алкинов показаны в табл. 1.

Таблица 1. Физические свойства некоторых алкинов
Название
Формула
t пл,°С
t кип,°С
d204

Ацетилен (этан)
HC?CH
— 81,8
-84,0
0,6181*

Метилацетилен (пропин)
НС?С-СН3
-101,5
-23,2
0,7062**

Этилацетилен (бутин-1)
НС?С-С2Н5
-125,7
+8,1
0,6784

Пропилацетилен (пентин-1)
НС?С- (СН2)2-СН3
-90,0
+40,2
0,6900

Метилэтилацетилен (пентин-2)
Н3С-С?С-С2Н5
-101,0
+56,1
0,7107

Бутилацетилен (гексин-1)
НС?С- (СН2)3-СН3
-131,9
+71,3
0,7155

*При температуре -32 °С,

**При температуре- 50 °С.

Химические свойства. Химические свойства алкинов определяются тройной связью, особенностями ее строения. Алкины способны вступать в реакции присоединения, замещения, полимеризации и окисления.

Реакции присоединения. Будучи непредельными соединениями, алкины вступают в первую очередь в реакции присоединения. Эти реакции протекают ступенчато: с присоединением одной молекулы реагента тройная связь вначале переходит в двойную, а затем, по мере дальнейшего присоединения, — в одинарную. Казалось бы, алкины, обладая двумя p-связями, гораздо активнее должны вступать в реакции электрофильного присоединения. Но это не совсем так. Углеродные атомы в молекулах алкинов расположены ближе друг к другу, чем в алкенах, и обладают большей электроотрицательностью. Это связано с тем, что электроотрицательность атома углерода зависит от его валентного состояния. Поэтому p-электроны, находясь ближе к ядрам углерода, проявляют несколько меньшую активность в реакциях электрофильного присоединения. Кроме того, сказывается, близость положительно заряженных ядер атомов, способных отталкивать приближающиеся электрофильные реагенты (катионы). В то же время алкины могут вступать в реакции нуклеофильиого присоединения (со спиртами, аммиаком и др.).

1. Гидрирование. Реакция протекает в тех же условиях, что и в случае алкенов (катализаторы Pt, Pd, Ni). При восстановлении алкинов вначале образуются алкены, а затем — алканы:

HC?CH -® H2C=CH2 -® H3C-CH3

ацетилен этилен этан

2. Галогенирование. Эта реакция протекает с меньшей скоростью, чем в ряду этиленовых углеводородов. Реакция также проходит сту пенчато:

HC?CH -® CHBr=CHBr -® CHBr2-CHBr2

3. Гидрогалогенирование. Реакции присоединения галогеноводородов, как и галогенов, идут в основном по механизму электрофильного присоединения:

HC?CH + HCl -® H2C=CHCl -® H3C-CHCl2

Вторая молекула галогеноводорода присоединяется в соответствии с правилом Марковникова.

4. Присоединение воды (реакция М.Г.Кучерова,. 1881). Катализатор — соль ртути:

HC?CH + HOH —® u H2C=CH-OHu ® H3C-C=O

Неустойчивое промежуточное соединение — виниловый спирт — перегруппировывается в уксусный альдегид.

5. Присоединение синильной кислоты:

НС?СН + HCN кат.® H2C=CH-CN

Акрилонитрил — ценный продукт. Он используется в качестве мономера для получения синтетического волокна — нитрон.

6. Присоединение спирта. В результате этой реакции образуются простые виниловые эфиры (реакция А. Е.Фаворского):

НС?СН + HO-C2H5 KOH® H2C=CH-O-C2H5

Присоединение спиртов в присутствии алкоголятов — типичная реакция нуклеофильного присоединения.

Реакции замещения. Водородные атомы в ацетилене способны замещаться на металлы (реакция металлирования). В результате образуются металлические производные ацетилена — ацетилениды. Такую способность ацетилена можно объяснить следующим образом. Углеродные атомы ацетилена, находясь в состоянии sp-гибридизации, отличаются, как известно, повышенной электроотрицательностью (по сравнению с углеродами в других гибридных состояниях). Поэтому электронная плотность связи С-H несколько смещена в сторону углерода и атом водорода приобретает некоторую подвижность:

Но эта «подвижность», конечно, несравнима со «свободой» протона в настоящих кислотах: соляная кислота, например, почти в 1033 раз сильнее по кислотности, чем ацетилен. Но и такая подвижность водорода достаточна, чтобы произошла его замена на металл в щелочной средe. Так, при действии на ацетилен аммиачного раствора оксида серебра образуется ацетиленид серебра:

HC?CH + 2OH ® Ag-C?C-Ag + 4NH3 + 2H2O

С ацетиленидами в сухом виде следует обращаться очень осторожно: они крайне взрывоопасны.

Реакция изомеризации. Ацетиленовые углеводороды, как алканы и алкены, способны к изомеризации с перемещением тройной связи:

Н3С-СН2-С?СН Na(спирт р-р)® Н3С-С?С-СН3

Реакции полимеризации. Ацетилен в зависимости от условий реакции способен образовывать различные продукты полимеризации — линейные или циклические:

НС?СН + НС?СН -®НС?СН-CН=CH2

Эти вещества представляют большой интерес. Например, при присоединении к винилацетилену хлороводорода образуется хлоропрен, который в качестве мономера используется в производстве хлоропренового каучука:

Н2С=СН-C?CH + 2HCl ® Н2С=С-СН==СН2

Реакция окисления. Ацетилены легко окисляются. При этом происходит разрыв молекулы по месту тройной связи. Если ацетилен пропускать через окислитель (водный раствор перманганата калия), то раствор быстро обесцвечивается. Эта реакция является качественной на кратные (двойные и тройные) связи:

3НС?СН + 10KMnO4 + 2H2O ® 6CO2 + 10КОН + 10MnO2

При полном сгорании ацетилена на воздухе образуются два продукта оксид углерода (IV) и вода:

2НС?СН + 5O2 ® 4СO2 + 2Н2O

При неполном сгорании образуется углерод (сажа):

НС?СН + O2 ® С + СО + Н2О

5. Отдельные представители

Ацетилен (этин) НС?СН — бесцветный газ, без запаха (технический ацетилен имеет неприятный запах, что объясняется присутствием различных примесей). Ацетилен мало растворим в воде, хорошо — в ацетоне. На воздухе горит сильно коптящим пламенем [ высокое (в процентах) содержание углерода в молекуле]. При горении в кислороде ацетилен создает высокотемпературное пламя (до 3000 °С). Это используется для сварки и резки металлов. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах (маркировка: белый баллон с красной надписью «Ацетилен»). Этот баллон заполняют пористым материалом, который пропитывают ацетоном.

Ацетилен — ценный продукт для химической промышленности. Из него получают синтетический каучук, уксусный альдегид и уксусную кислоту, этиловый спирт и многие другие вещества.

Винилацетилен (бутен-1-ин-3) НС?C-СН=CН2 — газ с неприятным запахом. При восстановлении образует бутадиен-1,3, а при присоединении хлороводорода — 2-хлорбутадиен-1,3 (хлоропрен).

Для подготовки использованы материалы с сайта http://chemistry.narod.ru/

Помогите пожалуйста=) 1)Составьте уравнения реакций, с помощью которых можно осуществить превращения по схеме:

Составьте уравнения реакций, с помощью которых можно осуществить превращения по схеме:

А 1. Общая формула алкадиенов: 1) Сn H2n 3) CnH2n-2 2) CnH2n+2 4) CnH2n-6 А 2. Название вещества, формула которого СН3─СН2─СН2─СН(СН3)─СОН 1)

2-метилпентаналь 3) 4-метилпентаналь 2) 2-метилпентанол 4) пентаналь А 3. Вид гибридизации электронных орбиталей атома углерода, обозначенного звёздочкой в веществе, формула которого СН3─С∗≡СН 1) sp3 3) sp 2) sp2 4) не гибридизирован А 4. Только σ-связи присутствуют в молекуле 1) ацетилена 3) 2-мтилбутена-2 2) изобутана 4) метилбензола А 5. Гомологами являются 1) этин и этен 3) циклобутан и бутан 2) пропан и бутан 4) этен и метан А 6. Изомерами являются: 1) пентан и пентадиен 3) этанол и этаналь 2) уксусная кислота и метилформиат 4) этан и ацетилен А 7. Окраска смеси белка с гидроксидом меди (ΙΙ) 1) голубая 3) красная 2) синяя 4) фиолетовая А 8. Анилин из нитробензола можно получить при помощи реакции: 1) Вюрца 3) Кучерова 2) Зинина 4) Лебедева А 9. Какие вещества можно использовать для последовательного осуществления следующих превращений С2Н5ОН → С2Н5Сl → С4Н10 1) O2, Na 3) HСl, NaОН 2) HСl, Na 4) NaCl, Na А 10. Объём этана, необходимый для получения 4 л углекислого газа 1) 2л 3) 10 л 2) 4 л 4) 6 л Б 1. Установите соответствие между молекулярной формулой органического вещества и классом, к которому оно относится А) С4Н6 1) арены Б) С4Н8О2 2) углеводы В) С7Н8 3) альдегиды Г) С5Н10О5 4) сложные эфиры 5) алкины Б 2. Фенол реагирует с 1) натрием 2) кислородом 3) гидроксидом натрия 4) оксидом кремния (ΙV) 5) бензолом 6) хлороводородом Б 3. И для метана, и для пропена характерны 1) реакции бромирования 2) sp-гибридизация атомов углерода в молекулах 3) наличие π-связей в молекулах 4) реакция гидрирования 5) горение на воздухе 6) малая растворимость в воде Б 4. Молекулярная формула углеводорода, массовая доля водорода в котором 15,79 %, а относительная плотность паров по воздуху 3, 93 ________ С 1. Напишите уравнения реакций, с помощью которых можно осуществить превращения по схеме СН4 → СН3Сl → С2Н6 → С2Н4 → С2Н5ОН → НСООС2Н5 ↓ СО2 С 2. Рассчитайте массу сложного эфира, полученного при взаимодействии 46 г 50% раствора муравьиной кислоты и этилового спирта, если выход продукта реакции составляет 80% от теоретически возможного.

Помогите пожалуйста ЗАДАНИЕ 1 Для вещества, формула которого С(3ная связь)=-С-СH2-СH3, | СН3 составьте

структурные формулы двух изомеров и двух гомологов. Дайте названия всех веществ по систематической номенклатуре.

С какими из перечисленных веществ: бром,бромоводород, вода, гидроксид натрия,этан — будет реагировать ацетилена? Напишите уравнения реакций, укажите условия их осуществления, составьте названия исходных веществ и продуктов реакций.

ам. Его химические свойства определяются тройной связью. Он способен вступать в реакции окисления, замещения, присоединения и полимеризации. Этан – предельный углеводород, для которого характеры реакции замещения по радикальному типу, дегидрирования и окисления. При температуре около 600 градусов по Цельсию он разлагается на водород и этен.

Вам понадобится

  • — химическое оборудование;
  • — катализаторы;
  • — бромная вода.

Инструкция

Ацетилен, этилен и этан — в обычных условиях бесцветные горючие газы. Поэтому сначала ознакомьтесь с техникой безопасности при работе с летучими веществами. Не забудь повторить строение молекул и химические свойства алкинов (непредельных углеводородов), алкенов и алканов. Посмотрите, чем они похожи и чем различаются. Для получения этана вам потребуется ацетилен и водород.

Чтобы произвести ацетилен в лабораторных условиях, проведите разложение карбида кальция CaC2. Его можете взять готовым или же получить путем спекания негашеной извести с коксом: СаО+3C=CaC2+CO — процесс протекает при температуре 2500°C, СаС2+2Н2O=C2H2+Са(ОН)2.Проведите качественную реакцию на ацетилен — обесцвечивание бромной воды или раствора перманганата калия.

Получить водород вы сможете несколькими способами: — взаимодействием металлов с кислотой: Zn+2 НСl=ZnСl2+Н2 — во время реакция щелочи с металлами, гидроксиды которых обладают амфотерными свойствами: Zn+2 NaОН+2 Н2О=Na2+Н2 — электролизом воды, для увеличения электропроводности которой добавляют щелочь. При этом на катоде образуется водород, а на аноде – кислород: 2 Н2О=2 Н2+O2.

Для получения из ацетилена этана необходимо провести реакцию присоединения водорода (гидрирование), учитывая при этом свойства химических связей: сначала из ацетилена получается этилен, а затем при дальнейшем гидрировании – этан. Для наглядного выражения процессов составьте и запишите уравнения реакций:C2H2+H2=C2H4C2H4+H2=C2H6Реакция гидрирования протекает при комнатной температуре в присутствии катализаторов – мелко раздробленного палладия, платины или никеля.

При работе соблюдайте технику безопасности. Помните, что данные газы хорошо горят и при смешении с воздухом или кислородом взрывоопасны.

Учтите, что водород легче воздуха, поэтому собирать его надо в перевернутую вверх дном пробирку. Определить получение этана вы сможете путем воздействия его на бромную воду (ее окраска останется неизменной).

Внимание, только СЕГОДНЯ!

Задания на определение веществ, относящихся к разным классам органических соединений – это достаточно распространенный вариант контроля знаний и умений по химии. Сюда можно отнести лабораторный опыт, задание из практической работы или теоретические…

Этан и пропан – газы, простейшие представители ряда предельных углеводородов — алканов. Их химические формулы С2Н6 и С3Н8 соответственно. Этан служит сырьем для производства этилена. Пропан же используется в качестве топлива, как в чистом виде, так…

Бутан – органическое соединение алканового ряда. Это бесцветный газ, который образуется в процессе переработки (крекинге) нефти. При высоких концентрациях бутан ядовит, также этот углеводород горюч и взрывоопасен. Получают его в лаборатории и в…

Этанол, или этиловый спирт, как и этилен относятся к органическим соединениям. Этанол – это одноатомный спирт, а этилен – непредельный углеводород класса алкенов. Однако между ними существует генетическая связь, согласно которой из одного вещества…

Бутан — органическое вещество, относящееся к классу предельных углеводородов. Его химическая формула С4H10. Он главным образом используется как компонент высокооктановых бензинов и как сырье для производства бутена. Бутен — непредельный углеводород,…

Цепочка химических превращений — это последовательность химических реакций, в результате которых одни вещества превращаются в другие. Чтобы осуществить такую цепочку, нужно прежде всего уметь правильно записывать уравнения реакций и знать, при каких…

Этан — С2Н6 — газ без запаха и цвета, класса алканов. В природе находится в составе нефти, природного газа, других углеводородов, поэтому относится к органическим соединениям. Из этана можно получить этиловый спирт. Правда, этот процесс достаточно…

Ацетилен – простейший представитель класса алкинов, т.е. углеводородов, имеющих в своей молекуле тройную связь. Его химическая формула C2H2. Это бесцветный газ, легче воздуха, весьма взрывоопасный и химически активный. Хранят ацетилен в стальных…

Этан – бесцветный газ, представитель класса алканов, имеющий химическую формулу С2Н6. Этилен – также бесцветный газ, но, в отличие от этана, в природе почти не представлен. Это вещество — простейший представитель родственного алканам класса алкенов,…

Метан представляет собой простейший предельный углеводород, из которого путем последующих реакций могут быть получены другие органические вещества, в том числе и этилен. Он, как и метан, является простейшим веществом, но, в отличие от него,…

Этан — один из часто встречающихся в природе газов. Это органическое вещество, которое наравне с метаном входит в состав нефти и природного газа. Из него получают этилен, который, в свою очередь, является сырьем для получения уксусной кислоты,…


источники:

http://5terka.com/node/4593

http://lenmosart.ru/history/kak-iz-etana-poluchit-acetilen-uravnenie-reakcii-kak-poluchit-etan-iz/