Из истории уравнений с параметром

Урок по теме «Методы решения задач с параметрами»

Разделы: Математика

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a, при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2 , то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

Чтобы записать окончательный ответ, необходимо понять,

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a) рассматриваются графики в координатной плоскости (x;y) или в плоскости (x;a).

Пример 2. Для каждого значения параметра a определите количество решений уравнения .

Заметим, что количество решений уравнения равно количеству точек пересечения графиков функций и y = a.

График функции показан на рис.1.

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение = —ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть = t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а, при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

Задача № 1. При каких значениях параметра b уравнение не имеет корней?

Ⅱ . Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a, при которых множество решений неравенства:

содержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

.

Преобразуем обе части неравенства.

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия:

Рис.4

При a > 6 множество решений неравенства: .

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a).

Это

Ⅲ . Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции взяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции является гипербола. По условию x > 0. При неограниченном возрастании х дробь монотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

2) По определению степени область определения D(y) состоит из решений неравенства . При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 0 , то z(x) > z(0) = 1 . Значит, каждое положительное значение х является решением неравенства . Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство равносильно неравенству . Если a ≥ 5 , то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 . Так как возрастает на , то z(3) .

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

Работа МАН «Решение уравнений с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

МАЛАЯ АКАДЕМИЯ НАУК УЧАЩЕЙСЯ МОЛОДЕЖИ

Отделение (номинация): математика

Решение уравнений с параметрами

Максютенко Наталья Сергеевна,

Стахановской СМГ №15 ,

специалист І категории

ВВЕДЕНИЕ

«Метод решения хорош,

если с самого начала мы можем предвидеть –

и далее подтвердить это, — что,

следуя этому методу, мы достигнем цели.»

В повседневной жизни мы очень часто сталкиваемся с понятием параметра: параметр загрузки в windows 8, параметры бытовых приборов, параметры автомобиля. Покупая какую-то вещь, мы внимательно изучаем ее основные характеристики. Так, приобретая компьютер, мы обращаем внимание на следующие его параметры: производительность, габариты, состав комплектующих, цену и др.. Исследование многих жизненных процессов осуществляется с помощью параметров. Например, состояние больного определяется с помощью параметров температуры, давления. Для оценки состояния спортсмена в качестве параметра используется частота сердечных сокращений. Положение движущегося тела в пространстве определяется параметром времени. В изолированном сосуде данного объема давление газа характеризуется параметром температуры.

Толковый словарь определяет параметр как величину, характеризующую какое-нибудь основное свойство машины, устройства, системы или явления, процесса. (Ожегов С.И. , Шведова Н.Ю. Толковый словарь русского языка. Москва. 1999). Рассмотрение параметров — это всегда выбор. Перед выбором мы стоим и в различных жизненных ситуациях.

Вспомним сказку. В чистом поле стоит столб, а на столбу написаны слова: «Кто поедет от столба сего прямо, тот будет голоден и холоден; кто поедет в правую сторону, тот будет здрав и жив, а конь его будет мертв; а кто поедет в левую сторону, тот сам будет убит, а конь его жив и здрав останется!» Иван-царевич прочел эту надпись и поехал в правую сторону, держа на уме: хоть конь его и убит будет, зато сам жив останется и со временем сможет достать себе другого коня. (“Иван-царевич и серый волк” Русская народная сказка).

Но это в сказке, а что же собой представляет параметр в математике? Какую роль он играет при решении уравнений? Какими методами решаются уравнения с параметрами?

Актуальность данной темы определяется необходимостью уметь решать такие уравнения с параметрами при сдачи Единого Государственного экзамена и на вступительных экзаменах в высшие учебные заведения.

Цель данной работы систематизировать уравнения, содержащие параметр, и составить алгоритм их решения с учетом свойств различных функций.

Для достижения поставленной цели необходимо решить следующие задачи:

1) дать определения понятиям «уравнение с параметрами»;

2) показать принцип решения данных уравнений на общих случаях;

3) показать решение уравнений с параметрами, связанных со свойствами линейной, квадратичной, рациональной и иррациональной функциями, используя различные методы.

4) составить алгоритм решения уравнений с параметрами, с учетом свойств различных функций.

Для выполнения поставленной цели были использованы следующие методы: использование литературы разного типа, работа в группах на уроках алгебры и факультативных занятиях по математике.

Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций.

Я выбрал эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Моя работа поможет понять другим ученикам как решаются уравнения с параметрами, применяя аналитический и графического методы, узнать о происхождении таких уравнений. В своей работе я ознакомился с теоретическими основами решения уравнений, содержащих параметр. Рассмотрел аналитический и графический способы решения основных видов уравнений, содержащих параметр.

В моей работе рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на ЕГЭ. В первой части изложен наиболее стандартный, аналитический способ решения уравнений, а во второй – графический.

Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.

РАЗДЕЛ 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕШЕНИЯ УРАВНЕНИЙ, СОДЕРЖАЩИХ ПАРАМЕТР

Пусть дано равенство с переменными x, a :

Если ставится задача для каждого действительного значения а решить это уравнение относительно х , то уравнение называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит для каждого значения а найти значения х , удовлетворяющие этому уравнению.

с неизвестными х, у, . z и с параметрами . При всякой допустимой системе значений параметров α 0 , β 0 , . γ 0 уравнение ( F ) обращается в уравнение

с неизвестными х, у. z, не содержащих параметров. Уравнение ( F 0 ) имеет некоторое вполне определенное множество (быть, может, пустое) решений.

Аналогично рассматриваются неравенства и системы, содержащие параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.

Определение. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.

Понятие эквивалентности применительно к уравнениям, содержащие параметр, устанавливается следующим образом.

Определение. Два уравнения

с неизвестным х, у. z и с параметрами называются эквивалентными, если для обоих уравнений множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения эквивалентны.

Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.

Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.

Предположим, что каждое из неизвестных, содержащихся в уравнении

задано в виде некоторой функции от параметров:

Говорят, что система функций ( Х ), заданных совместно, удовлетворяет уравнению ( F ), если при подстановке этих функций вместо неизвестных х , у . z в уравнение ( F ) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:

При всякой допустимой системе численных значений параметров = α 0 , , . соответствующие значения функций ( Х ) образуют решение уравнения [ Горнштейн, П.И. Задачи с параметрами: учеб. пособие/ П.И. Горнштейн, В.Б. Полонский, М.С. Якир – Киев, 1992. ].

РАЗДЕЛ 2 ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ,

Основной принцип решения параметрических уравнений можно сформулировать так: необходимо разбить область изменения параметра на участки, такие, что при изменении параметра в каждом из них получающиеся уравнения можно решить одним и тем же методом. Отдельно для каждого участка находятся корни уравнения, выраженные через значения параметра, используемые для этого приемы в точности таковы, как и при решении уравнений с постоянными коэффициентами. Поскольку каждый из методов представляет собой последовательность определенных действий, которые могут выполняться по-разному в зависимости от значений параметра, то выбранные первоначально участки его изменения в процессе решения могут дробиться с тем, чтобы на каждом из них рассуждения проводились единообразно. Ответ задачи состоит из списка участков изменения параметра с указанием для каждого участка всех корней уравнения.

Для разбиения множества значений параметра на участки удобно воспользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра будем называть контрольными.

Основное, что нужно усвоить при решении таких уравнений. Параметр – это буква, которая «никому ничем не обязана» и может принимать любые допустимые значения. Поэтому с ней нужно необходимость осторожно, даже деликатно, помня, что это фиксированное, но неизвестным числом.

2.1. История возникновения уравнений с параметром

Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кроме параметра a , могут быть и отрицательными.

В алгебраическом трактате Ал-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е.

2) «Квадраты равны числу», т. е.

3) «Корни равны числу», т. е

4) «Квадраты и числа равны корням», т. е.

5) «Квадраты и корни равны числу», т. е.

6) «Корни и числа равны квадратам», т. е.

Формулы решения квадратных уравнений по Ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи.

Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.

История возникновения графического метода далеко уходит в древние века. Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. При таком характере не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)

Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им «линией интенсивностей» или «линией верхнего края» (график соответствующей функциональной зависимости). Оресм изучал даже «плоскостные» и «телесные» качества, т.е. функции, зависящие от двух или трех переменных.

Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.

Чтобы создать математический аппарат для изучения графиков функций, понадобилось понятие переменной величины. Это понятие было введено в науку французским философом и математиком Рене Декартом (1596-1650). Именно Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему.

Таким образом, графики функций за все время своего существования прошли через ряд фундаментальных преобразований, приведших их к тому виду, к которому мы привыкли. Каждый этап или ступень развития графиков функций — неотъемлемая часть истории современной алгебры и геометрии.

Графический способ определения числа корней уравнения в зависимости от входящего в него параметра является более удобным, чем аналитический.

2.2. Теорема Виета

Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d , умноженное на α минус α 2 , равно bc , то α равно b и равно d ».

Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х ), гласные же b, d – коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:

Если имеет место

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2.3. Аналитический метод решения задач с параметрами.

2.3.1. Линейные уравнения с параметрами

Уравнение вида , где – некоторые постоянные, называется линейным уравнением.

Если , то линейное уравнение имеет единственный корень: .

Если , переписав исходное уравнение в виде , легко видеть, что любое х является решением линейного уравнения.

Если а, то линейное уравнение не имеет корней.

Класс линейных уравнений с параметром выделяется с помощью двух характеристик:

1. В уравнении переменная х находится в первой степени;

2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду

Основываясь на основные свойства линейной функции, можно составить алгоритм решения. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 1).

Решить уравнение: , если а – параметр.

1. Область допустимых значений параметра – вся числовая прямая.

2. Приведем уравнение к виду .

3. Контрольными являются те значения параметра, при которых коэффициент при х обращается в нуль. Такими значениями будут.

4. Если , то уравнение примет вид . Это уравнение не имеет корней.

Если , то уравнение примет вид . Корнем этого уравнения является любое действительное число.

Ответ: если , то корней нет;

Решить уравнение: , если а – параметр.

1. Область допустимых значений параметра – вся числовая прямая.

2. Приведем уравнение к виду .

3. Контрольные значения параметра: .

4. Если , то уравнение примет вид . Это уравнение не имеет корней.

Если , то уравнение примет вид. Корнем этого уравнения является любое действительное число.

Ответ: если , то корней нет;

Область допустимых значений параметра – вся числовая прямая.

Приведем уравнение к виду

Контрольные значения параметра: .

если , то уравнение принимает вид , x

если , то уравнение имеет один корень

2.3.2. Квадратные уравнения, содержащие параметр

Класс уравнений второй степени с параметрами определяется с помощью двух характеристик:

1. Переменная х в уравнении находится в первой и второй степенях;

2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду

Контрольные значения параметра определяются дискриминантом D . На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из типов:

Если , то уравнение имеет два корня:

Если , то уравнение имеет один корень кратности два или два равных корня

Если , то уравнение не имеет действительных корней.

Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:

На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.

На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду .

Выделяют множество контрольных значений параметра, для которых .

Если уравнение имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.

На бесконечном множестве решений уравнения проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и , соответствует третий тип не особых частных уравнений.

Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень .

Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.

Множеству значений параметра, для которых и , соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где и , частные уравнения имеют два различных действительных корня (см. [ Горнштейн, П.И. Задачи с параметрами: учеб. пособие/ П.И. Горнштейн, В.Б. Полонский, М.С. Якир – Киев, 1992. ],[5]).

Из этого следует алгоритм решения квадратных уравнений с параметрами. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 2)

Область допустимых значений параметра – вся числовая прямая.

Контрольным значением параметра является .

при уравнение будет линейное

при уравнение будет квадратным

Если , то уравнение примет вид . Отсюда .

При уравнение является квадратным. Найдем дискриминант уравнения:

Контрольное значение параметра

Оценим знак дискриминанта

Если и действительных корней нет.

Область допустимых значений параметра – вся числовая прямая.

Контрольное значение параметра .

Если , то уравнение будет линейным и примет вид

Если , то уравнение будет квадратным с дискриминантом

Уравнения с параметром — алгоритмы и примеры решения

Общие сведения

Уравнением является любое математическое тождество или физический закон, в котором присутствуют неизвестные величины. Последние необходимо находить. Этот процесс называется поиском корней. Однако не во всех случаях у равенства с переменными бывают решения, а это также нужно доказать.

Корень — величина или диапазон, превращающие искомое выражение в верное равенство. Например, в 5s=10 переменная эквивалентна 2, поскольку только это значение позволяет получить верное тождество, то есть 5*2=10.

Примером диапазона или интервала решений является выражение следующего вида: 0/t=0. Его корнем может быть любое действительное число, кроме нуля. Записывается решение в таком виде: t ∈ (-inf;0)U (0;+inf), где «∈» — знак принадлежности, «-inf» и «inf» — минус и плюс бесконечно большие числа соответственно.

Параметром в уравнении называется некоторая величина, от которой зависит поведение равенства на определенном интервале. Следует отметить, что он также влияет на значение корня, когда входит с ним в различные арифметические операции: сложения, вычитания, умножения, деления, возведения в степень и так далее. Тождества такого типа называют также параметрическими. Далее необходимо разобрать классификацию уравнений.

Классификация уравнений

Уравнения делятся на определенные виды, от которых зависит выбор методики их решения. Они бывают следующими: алгебраическими, дифференциальными, функциональными, трансцендентными и тригонометрическими. Кроме того, все они могут содержать некоторую величину — параметр. Его часто обозначают литерой «р» или «а».

Алгебраический тип является наиболее простым, поскольку не содержит сложные элементы. Дифференциальные тождества с неизвестными — одни из самых сложных выражений с точки зрения алгоритма. Они бывают первого, второго, третьего, а также высших порядков. Для нахождения их корней необходимо знать правила дифференцирования и интегрирования.

Практически все функциональные уравнения содержат один или более параметров. Основное их отличие от остальных заключается в функции, которая задается сложным выражением. Последнее может включать несколько неизвестных и параметрических элементов. Примером такого тождества является функция Лапласа, содержащая интеграл обыкновенного типа, а также экспоненту.

К трансцендентным относятся выражения, содержащие показательную, логарифмическую и радикальную (знак корня). Последний тип — тригонометрические. Они содержат любое равенство, содержащее следующие функции: sin, cos, tg и ctg. Однако в математике встречаются также их производные: arcsin, arccos, arcctg, arctg и гиперболические тождества.

Специалисты рекомендуют освоить на начальных этапах обучения методики, позволяющие решать уравнения с параметром линейного типа. После этого можно переходить к более сложным тождествам — функциональным, трансцендентным и так далее.

Алгебраический вид

Алгебраические не содержат в своем составе сложных функций, но в них могут присутствовать компоненты со степенным показателем.

На основании последней характеристики они делятся на 5 типов:

  1. Линейные.
  2. Квадратные (квадратичные).
  3. Кубические.
  4. Биквадратные.
  5. Высших порядков.

Линейные — выражения с переменной, которая имеет только первую степень (равную единице). Если показатель эквивалентен двойке, то такое тождество называется квадратным. В математической интерпретации его еще называют квадратным трехчленом. Когда показатель при неизвестной эквивалентен тройке, тогда это равенство называется кубическим.

Наиболее сложными по своей структуре являются биквадратные (содержат 4 степень). Однако на этом виды линейных уравнений не заканчиваются, поскольку бывают равенства с более высокими показателями. Их называют уравнениями высших порядков. Кроме того, любые тождества могут объединяться в системы уравнений. Их особенностью являются общие решения.

Линейные и квадратичные

Линейное — это самое простое уравнение, которое имеет всего одно решение. Оно решается по следующей методике:

  1. Записывается искомое выражение.
  2. При необходимости раскрываются скобки и приводятся подобные элементы.
  3. Неизвестные (переменные) остаются в левой части тождества, а все константы (числа) — переносятся вправо.
  4. Правая часть сокращается на коэффициент при неизвестной.
  5. Записывается результат.
  6. Выполняется проверка посредством подстановки корня в исходное выражение.

Следует отметить, что линейное выражение с переменной может не иметь решений, поскольку иногда невозможно выполнить операцию сокращения. Например, 0t=85. Равенство не имеет корней, поскольку на нулевое значение делить нельзя, так как при этом получается пустое множество.

Следующим типом является уравнение квадратичной формы At 2 +Bt+C=0. Оно может иметь один или два решения. Однако бывают случаи, при которых корней нет вообще. Для получения результата вводится понятие дискриминанта «D=(-B)^2−4*А*С». Для решения следует воспользоваться следующим алгоритмом:

  1. Записать выражение.
  2. Выполнить при необходимости математические преобразования по раскрытию скобок и приведению подобных слагаемых.
  3. Вычислить значение D (D 0 — два решения).
  4. При D=0 формула корня имеет такой вид: t=-В/(2А).
  5. Если D>0, то решения определяются по следующим соотношениям: t1=[-В-D^(½)]/(2А) и t2=[-В+D^(½)]/(2А).
  6. Записать результат.
  7. Выполнить проверку по отсеиванию ложных корней.

Следует отметить, что ложный корень — значение переменной, полученное по соответствующей формуле, но при подстановке в исходное выражение не выполняет условие равенства нулевому значению.

Кроме того, нужно обратить внимание на типы квадратных уравнений. Они бывают полными и неполными. Первые содержат все коэффициенты (А, В и С), а во вторых — некоторые из них могут отсутствовать, кроме А, так как тогда тождество должно содержать вторую степень при неизвестной.

Неполные решаются методом разложения на множители. Например, «v 2 −81=0» раскладывается следующим образом (формула сокращенного умножения — разность квадратов): (v-9)(t+9)=0. Анализируя последнее равенство, можно сделать вывод о понижении степени. Корнями уравнения являются два значения, t1=-9 и t2=9.

Кубичеcкие и биквадрaтные

Кубические и биквадратные равенства с неизвестным рекомендуется решать при помощи замены переменной. Однако в некоторых случаях можно применить формулы понижения степени или разложения на множители. Иными словами, суть решения алгебраических уравнений, степень которых превышает двойку, сводится к ее понижению различными методами.

Замена переменной производится на другую неизвестную величину. В примере (t 3 −2)+2t 3 −4=0 можно ввести следующий элемент — v=t 3 −2. В результате этого получится равенство такого вида: v+2v=0. Оно решается очень просто:

  1. Приводятся подобные элементы: 3v=0.
  2. Находится корень: v=0.
  3. Приравнивается к выражению, которое заменяли: t 3 −2=0.
  4. Находится корень (один, поскольку у радикала нечетная степень): t=[2]^(1/3).
  5. Проверяется условие: 2^(1/3)^3−2+2*(2^(1/3)^3)-4=4−4=0 (истина).

Биквадратные тождества решаются таким же методом. Однако существует еще один способ — разложение на множители. Его необходимо разобрать на примере решения выражения «4m 4 −324=0». Решать нужно по такому алгоритму:

  1. Упростить (вынести четверку за скобки и сократить на нее): 4 (m 4 −81)=m 4 −81=0.
  2. Разложить на множители (разность квадратов): (m 2 −9)(m 2 +9)=(m-3)(m+3)(m 2 +9)=0/
  3. Решить три уравнения: m1=3, m2=-3, m3=-3 и m4=3.
  4. Результат: m1=-3 и m2=3.
  5. Проверка: 4*(-3)^4−324=0 (истинно) и 4*(3)^4−324=0 (истинно).

Каждый из методов решения выбирается в зависимости от самого уравнения. При чтении условия задачи необходимо определить способ решения. Последний должен быть простым и удобным, а главное — количество шагов решения должно быть минимальным, что существенно сказывается на затраченном времени при вычислениях. Далее нужно рассмотреть подробный алгоритм решения уравнения с параметром.

Пример решения

На основании изученного материала можно приступить к практике решения уравнения с параметром, которое имеет следующий вид: 2v 4 −32−4p-(v 2 +4)+(v-2)(v+2)-v 4 +16=-4, где р — некоторый параметр. Корни и величину р необходимо искать по следующему алгоритму:

  1. Записать равенство с неизвестным и параметром: 2v 4 −32−4p-(v 2 +4)+(v-2)(v+2)-v 4 +16=-4.
  2. Выполнить математические преобразования: 2v 4 −32−4p-v 2 +4+v 2 −4-v 4 +16+4=v 4 −16+4p+4=0.
  3. Ввести замену v 4 −16=m: m+4p+4=0.
  4. Вывести формулу нахождения параметра: р=-(m/4)-1.
  5. Подставить величину m: р=-1-(v 4 +16)/4.
  6. C учетом соотношения равенство будет иметь такой вид: v 4 −16+4[-(v 4 +16−4)/4]+4=-32+8=0 (корней нет, поскольку -24 4 −12=0.
  7. Корни: v1=[12]^(¼) и v2=-[12]^(¼).
  8. Отрицательного корня v2 не существует, поскольку показатель радикала — четное число.
  9. Результат: v1=[12]^(¼).
  10. Проверка: <[12]^(¼)>^4−16+4=16−16=0 (истина).

Следует отметить, что v2 — ложный корень, а также параметр p, равный какому-либо значению, превращает уравнение в пустое множество. Для проверки можно воспользоваться специальным приложением, которое называется онлайн-калькулятором.

Таким образом, уравнения с параметром являются наиболее сложными, поскольку необходимо искать их корни, а также некоторое значение, влияющее на логику выражения. Для их решения необходимо следовать специальному алгоритму, предложенному математиками.


источники:

http://infourok.ru/rabota-man-reshenie-uravneniy-s-parametrami-1345035.html

http://nauka.club/matematika/algebra/uravneniya-s-parametrom.html