Из канонического уравнения в общее гипербола

Каноническое уравнение гиперболы

Вы будете перенаправлены на Автор24

Каноническое уравнение гиперболы имеет следующий вид: $\frac — \frac = 1$, где $a, b$ — положительные действительные числа.

Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.

Вывод канонического уравнения гиперболы

Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы

Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.

Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.

Рассмотрим произвольную точку $M$, принадлежащую гиперболе.

Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.

Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = \sqrt<(x + c)^2 + y^2>$, а $r_2 = \sqrt<(x - c)^2 + y^2>$.

Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $\sqrt <(x + c)^2 + y^2>— \sqrt <(x - c)^2 + y^2>= ±2a$ (1).

Умножим выражение (1) на $\frac <$\sqrt<(x + c)^2 + y^2>+ \sqrt<(x - c)^2 + y^2>><±2a>$, получается:, получается:

Сложим уравнения (1) и (2), получим:

Возведём (3) в квадрат:

$\frac + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$

$\frac \cdot x^2 – y^2 = c^2 – a^2$

Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $\fracx^2 – y^2 = b^2$

Готовые работы на аналогичную тему

Получаем уравнение: $\frac — \frac = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.

Каноническое уравнение параболы и гиперболы немного похожи между собой.

Уравнение параболы выглядит следующим образом:

$y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.

Каноническое уравнение гиперболы примеры решения

Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.

Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:

Запишем знаменатели в виде степеней:

Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.

Построение гиперболы по каноническому уравнению

Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.

Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению

Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±\frac$. Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±\frac<\sqrt<5>> <2>\cdot x$

Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$. Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.

Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы. Выразим $y$ из канонического уравнения нашей гиперболы:

Найдём точки для положительной части гиперболы:

при $x = 3, y =2.5$, а при $x = 3, y ≈3,87$.

Теперь можно отложить все эти точки и построить график гиперболы.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 30 11 2021

Из канонического уравнения в общее гипербола

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а сумму расстояний от произвольной точки эллипса до фокусов – через 2 a . По определению 2 a > 2 c , то есть a > c .

Выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы имют координаты: F 1 (– c ;0) и F 2 ( c ;0) . Пусть M ( x ; y ) – произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

Это уравнение равносильно первоначальному. Оно называется каноническим уравнением эллипса – кривой второго порядка .

Установим форму эллипса, пользуясь его каноническим уравнением.

1. Уравнение (2.17) содержит x и y только в четных степенях, поэтому если точка ( x ; y ) принадлежит эллипсу, то ему также принадлежат точки (– x ; y ), ( x ;– y ), (– x ;– y ) . Отсюда: эллипс симметричен относительно осей 0 x и 0 y , а также относительно точки O (0;0), которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат. Положив y = 0, найдем точки A 1 ( a ; 0) и A 2 (– a ; 0), в которых ось 0 x пересекает эллипс. Положив в уравнении (2.17) x = 0, находим точки пересечения эллипса с осью 0 y : B 1 (0; b ) и B 2 (0;– b ). Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса. Отрезки А1А2, В1В2, а также их длины 2 a и 2 b – соответственно большая и малая оси эллипса (рис. 2.4).

3. Из уравнения (2.17) следует, что каждое слагаемое в левой части не превосходит единицы, т.е.:

Следовательно, все точки эллипса лежат внутри прямоугольника, ограниченного прямыми x = ± a и y = ± b .

4. В уравнении (2.17) левая часть – сумма неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет уменьшаться, если | x | возрастает, | y | уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму овальной замкнутой кривой. Форма эллипса зависит от отношения . При a = b эллипс превращается в окружность, уравнение эллипса (2.17) принимает вид : x 2 + y 2 = a 2 . Отношение половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет эллипса . Причем 0 ε 1, так как 0 c a .

Отсюда видно, что чем меньше эксцентриситет эллипса, тем будет менее эллипс сплющенным; при ε = 0 эллипс превращается в окружность.

Прямые директрисы эллипса.

Если r – расстояние от произвольной точки до какого–нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение есть величина постоянная, равная эксцентриситету эллипса: .

Из равенства a 2 c 2 = b 2 следует, что a > b . Если же наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2 b лежит на оси 0 y , а малая ось 2 a – на оси 0 x . Фокусы такого эллипса находятся в точках F 1 (0; c ) и F 2 (0;– c ) , где . Данный эллипс будет растянут вдоль оси 0 y .

Пример 2.5. Составить уравнение линии, для каждой точки которой отношение расстояний от нее до точки A (3;0) и до прямой x = 12, равно числу ε =0,5 . Полученное уравнение привести к простейшему виду .

Решение . Пусть M ( x ; y ) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр MB на прямую . Тогда точка B( 12;y) . По условию задачи .

По формуле расстояния между двумя точками получаем:

Эксцентриситет эллипса

Примечание. Если эллипс (окружность) вращать вокруг одной из его осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)

Пример 2.6. В геодезии используется система географических координат, основанная на понятии геоида. Геоид – поверхность Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины.

Тело, поверхность которого более всего соответствует поверхности геоида, имеет определенные размеры и ориентирована соответственно в теле Земли, называется референц–эллипсоидом. В нашей стране с 1946 года для всех геодезических работ принят референц–эллипсоид Красовского с параметрами a = 6 378 245 м, b = 6 356 863 м, α = 1: 298,3.

Линия, проходящая вертикально через центр эллипсоида является полярной осью. Линия, проходящая через центр эллипсоида, перпендикулярно к полярной оси, – экваториальной осью. При пересечении поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно к полярной оси, образуется окружность, называемая экватором. Окружность, полученная от пересечения поверхности эллипсоида плоскостью, параллельной плоскости экватора, называется параллелью. Линия пересечения поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную ось, называется меридианом данной точки. Положение точки на земной поверхности определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной линией называется географической широтой. Для определения долгот точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол λ, составленный плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, называется географической долготой

Гипербола – геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости – фокусов, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а модуль разности расстояний от каждой точки гиперболы до фокусов через 2 a . По определению 2 a 2 c , то есть a c .

Выберем систему координат x 0 y так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь координаты F 1( c ;0 ) и F 2 (– c ;0 ). На этой основе выведем уравнение гиперболы. Пусть M ( x ; y ) – ее произвольная точка . Тогда по определению | MF 1 MF 2 |= 2 a , то есть . Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим каноническое уравнение гиперболы:

где b 2 = a 2 – c 2 . Гипербола линия 2–го порядка.

Установим форму гиперболы, исходя из ее канонического уравнения.

1. Уравнение (2.18) содержит x и y только в четных степенях. Следовательно, гипербола симметрична относительно осей координат 0 x и 0 y , и относительно точки O (0;0) – центра гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (2.18) y =0 , находим две точки пересечения гиперболы с осью 0 x : A 1 ( a ; 0) и A 2 (– a ; 0).

Положив в (2.18) x = 0, получаем y 2 = – b 2 , чего быть не может. Т.е. гипербола ось 0 y не пересекает.

3. Из уравнения (2.18) следует, что уменьшаемое . Это означает, что точки гиперболы расположены справа от прямой x = a (правая ветвь гиперболы) и слева от прямой x =– a (левая ветвь) (рис. 2.6).

4. Из уравнения (2.18) гиперболы видно, что когда | x | возрастает, то | y | также возрастает . Это следует из того, что разность – сохраняет значение, равно e единице. Следовательно, гипербола имеет форму, состоящую из двух неограниченных ветвей.

Прямая L называется асимптотой некоторой неограниченной кривой , если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном удалении т очки M вдоль кривой от начала координат.

Покажем, что гипербола имеет две асимптоты: . Так как данные прямые и гипербола (2.18) симметричны относительно координатных осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

Возьмем на прямой точку N , имеющую ту же абсциссу, что и точка M ( x ; y ) на гиперболе . Найдем разность | MN | :

Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка | MN | стремится к нулю. Так как | MN | больше расстояния d от точки M до прямой L, то d стремится к нулю тем более ( и подавно) . Следовательно, прямые – есть асимптоты гиперболы (рис. 2.7).

Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы .

Эксцентриситет гиперболы отношение расстояния между фокусами к величине её действительной оси, обозначается ε : . Так как у гиперболы c > a , то эксцентриситет ее больше единицы. Эксцентриситет характеризует форму гиперболы. Так как . Видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен . Действительно, . Фокальные радиусы , для точек правой ветви гиперболы имеют вид: r 1 = εx + a , r 2 = εx – a ; для точек левой ветви: r 1 =–( εx + a ), r 2 =–( εx – a ) .

Прямые называются директрисами гиперболы. Тот факт, что для гиперболы ε > 1, то означает : правая директриса расположена между центром и правой вершиной гиперболы, левая – между центром и левой вершиной. Директрисы гиперболы имеют тоже свойство , что и директрисы эллипса.

Уравнение определяет гиперболу с действительной осью 2 b , расположенной на оси 0 y , и мнимой осью 2 a, расположенной на оси абсцисс (подобная гипербола изображена на рисунке 2.7 пунктиром).

Значит , гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

Примечание. Если у кривой 2–го порядка смещен центр в некоторую точку O ( x 0 ; y 0 ) , то она называется нецентральной кривой. Уравнение такой кривой имеет вид:

Примечание. При вращении гиперболы вокруг ее действительной оси образуется двуполостный гиперболоид, вокруг ее мнимой оси – однополостный гиперболоид

Подробно данные уравнения рассмотрены в теме: «Исследование общего уравнения 2–ой степени» (смотри схему 10), частными случаями которого являются данные формулы.

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.


    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.


    источники:

    http://www.sites.google.com/site/vyssaamatem/kupit-ucastok/ii-3-kanoniceskie-uravnenia-ellipsa-i-giperboly

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola