Из водорода получить воду уравнение реакции

Водород: химия водорода и его соединений

Водород

Положение в периодической системе химических элементов

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

Степень окисленияТипичные соединения
+1кислоты H2SO4, H2S, HCl и др.

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

основные соли (CuOH)2CO3

-1гидриды металлов NaH, CaH2 и др.

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

CH4 — метан NH3 — аммиакH2O — вода HF –фтороводород
SiH4 — силанPH3 — фосфин H2S — сероводород HCl –хлороводород
AsH3 — арсин H2Se — селеноводород HBr –бромоводород
H2Te — теллуроводород HI –иодоводород

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений

Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).

Водород. Получение водорода.

Водород – широко распространенный элемент. Благодаря своей уникальности он может выступать в качестве окислителя и в качестве восстановителя. Существует несколько методов получения водорода.

Промышленный метод получения водорода .

1. Электролиз водных растворов солей (поваренная соль NaCl).

2. Пропускание паров поды над раскаленным коксом (Т = 1000 °С):

А на 2-ой стадии водяной газ пропускают над оксидом железа (III) при температуре около 450°С:

Часто эту реакцию называют реакцией сдвига.

3. Получение из природного газа. Основа – конверсия метана (основной компонент природного газа, СН4) с водяным паром. В итоге получается обратимая смесь, которая называется синтез-газом. Условия протекания процесса: никелевый катализатор и 1000°С:

Эту реакцию часто используют для получения водорода для реакции Габера (синтез аммиака).

4. Крекинг нефтяных продуктов.

Лабораторный метод получения водорода.

1. Под воздействием разбавленных кислот на металлы, которые стоят в ряду напряжения левее водорода.

2. Электролиз растворов кислот, щелочей на катоде выделяется водород.

Синтез воды Образование воды при горении

Синтез воды это

Это химические реакции взаимодействия атомов кислорода с атомами водорода, причем в результате синтеза воды образуется большое количество энергии в виде взрыва.

Образование воды при горении водорода в кислороде (воздухе) послужило доказательством состава воды как сложного вещества, состоящего из двух химических элементов — водорода и кислорода.

Схема установки для синтеза воды из простых веществ изображена на рисунке 2.

Приступая к выполнению опыта в собранной установке, прежде всего убеждаются в чистоте водорода, после чего его поджигают на конце Г-образной трубки 1, подводя ее под воронку 2. Включают водоструйный насос 4, соединенный с предохранительной двугорлой склянкой 5. Через некоторое время в дугообразной трубке 3 собирается немного жидкости. Водоструйный насос останавливают и прекращают ток водорода.

Образовавшийся продукт реакции идентифицируют, внося в приемник небольшое количество безводного сульфата меди. Появление голубого окрашивания (образование медного купороса) свидетельствует о том, что полученная в опыте жидкость — вода.

Можно продемонстрировать два опыта: горение водорода в кислороде и горение кислорода в водороде.

Для опытов собирают установку согласно рисунку 3. В качестве реактора используют со суд без дна (рис. 3, а) из набора НПХ или универсальную го релку (рис. 3,6).

Горение водорода в кислороде

Водород из прибора для получения газов 1 проверяют начистоту. Заполняют реактор 2 кислородом из газометра 3. Проверяют наполнение реактора 2 кислородом, поднося к его отверстию тлеющую лучинку. Поджигают водород на конце газоотводной трубки, не прекращая подачи кислорода из газометра.

Горение кислорода в водороде. Положение реактора меняют, закрепляя его в лапке штатива. Наполняют реактор 2 водородом. Для полного вытеснения воздуха пропускают водород из аппарата для получения газов не менее 2 мин. Поджигают водород горящей лучиной у отверстия реактора 2 и одно временно вводят газоотводную трубку с кислородом, который за горается от пламени горящего водорода.

Рис. 3. Установка для сжигания водорода и кислорода друг в друге:

а —горение водорода в кислороде: 1 — прибор для получения газов, 2 — реактор, 3 — газометр; б — универсальная горелка; в — горение кислорода в водороде.

Если пламя кислорода внутри реактора 2 погасло, немедленно закрывают кран аппарата для получения водорода. Повторять опыт можно после остывания колокола-реактора.

Чтобы установить, в каких объемных отношениях водород и кислород взаимодействуют с образованием паров воды, берут для взрыва определенные объемы газов и после реакции устанавливают, какой газ остался неизрасходованным и какой он занимал объем. Опыт проводят в эвдиометре — толстостенной трубке с дном и впаянными электродами. В настоящее время промышленный эвдиометр не может быть использован в школе из-за отсутствия безопасного высоковольтного преобразователя, который сейчас разрабатывается.

В качестве индуктора может быть использован пьезоэлектрический высоковольтный преобразователь . Верхний конец этой трубки плотно закрыт резиновой пробкой через которую продеты две проволоки. Верхние концы их присоединены вилке для подключения к источник тока (в сеть), а нижние концы загнуты. В них продета и укреплена тон чайшая медная проволочка-волосок В нижний конец трубки вставлена ре зиновая пробка 5 с узким отверстием, чтобы уменьшить поток воды в трубку (после взрыва) и таким образом предотвратить возможность выброса верхней пробки. Пробка не должна доходить до дна чаши 6 на 4—5 мм.

В трубку вводят равные объемы’ водорода и кислорода, например по 2 мл. Прибор укрепляют в штативе. Включают ток (вилку вставляют в сетевую розетку и сразу же вынимают)—происходит безопасное «короткое замыкание»— небольшая вспышка — и осуществляется синтез воды. Перегоревшую проволочку перед каждым опытом заменяют новой.

Взрыв кислородно-водородной смеси можно осуществить с помощью пьезоэлектрического источника электрического тока, используя насадку для воспламенения газов.

Если для взрыва были взяты одинаковые объемы кислорода и водорода, то после реакции остался один объем кислорода, (это доказывается вспыхиванием тлеющей лучинки). Следовательно, объемы вступающих в реакцию газов — водорода и кислорода—относятся как 2:1. Принимают во внимание, что кислород в 16 раз тяжелее водорода (это видно из сравнения плотности 1,44:0,089=16:1) и что соотношение объемов кислорода и водорода 1:2. Делают вывод, что массовые отношения этих эле ментов в воде 16:2, или 8 : 1 (или 88,9% О и 11,1 % Н).

Рис. 4. Установка для синтеза воды в искровом разряде:

1 — трубка-реактор, 2 —электроды, 3 — трубка с зажимом, 4 — воронка.

Для этого опыта и для разложения метана в искровом разряде можно использовать установку, изображенную на рисунке 4. Реактор 1, разделенный на четыре равные по объему части, заполняют водой через воронку 4 до появления капель воды из трубки при открытом зажиме 3. Затем реактор 1 через верхнюю трубку с зажимом 3 заполнят сначала двумя объемами водорода (из аппарата Киппа), а затем двумя объемами кислорода (из газометра). Электроды присоединяют к источнику тока. Вместо выпрямителя ВС-24М (В-24) можно использовать батарейку КБС. Искра получается при повороте одного из электродов на 180° до замыкания и размыкания цепи. После взрыва наличие оставшегося кислорода доказывают по воспламенению тлеющей лучинки, поднесенной к отверстию трубки 3. Для вытеснения кислорода из реактора воронку поднимают вверх при открытом зажиме.

Меры предосторожности. Перед наполнением реактора водород проверяют на чистоту. Во избежание выплескивания при взрыве воды из воронки ее накрывают листом мокрой фильтровальной бумаги.

Определение содержания кислорода в воздухе

Эксперименты по определению состава воздуха сыграли важную роль в развитии химии как науки, что нашло отражение и в учебной литературе по химии. Разработаны в связи с этим многочисленные учебные опыты по определению состава воздуха. Все они основаны на том, что воздух состоит из двух основных компонентов: один из них легко вступает во многие химические реакции (кислород), тогда как второй компонент смеси (атмосферный азот)—вещество Значительно менее реакционноспособное. Для демонстрации малопригодны исторические опыты с использованием электрических разрядов и поглощением образовавшихся оксидов азота ввиду их сложности и длительности. В учебных опытах используют для связывания кислорода легкоокисляющееся вещество — фосфор.

Сжигание фосфора в закрытом пространстве (стеклянный колпак-колокол, склянка с отрезанным дном) — традиционный школьный опыт,для определения состава воздуха. Техника выполнения этого опыта приведена во многих руководствах по химическому эксперимент, а также в школьных учебниках по химии, Этим способом состав воздуха определяют приблизительно.

Содержание кислорода в воздухе можно определить, если вме сте фосфора использовать медь (рис. 30). Простейший опыт состоит в нагревании порошка меди, помещенного на дно пробирки 1, градуированной на 5 равных частей и плотно закрытой ре зиновой пробкой с газоотводной трубкой, опущенной в стакан с водой. При нагревании кислород, содержащийся в пробирке 1, соединяется с медью. После охлаждения пробирки при открытом кране 2 вода засасывается на 1 /5 часть ее вместимости. Более точные результаты могут быть получены при использовании усовершенствованной установки опыт проводят в двух градуированных цилиндрах 1, 5 объемом по 500 мл каждый. В трубке помещена «колбаска» из свеже-восстановленной медной сетки.

Левый цилиндр 1 заполонен воздухом, правый — подкрашенной водой и погружен вверх дном в чашу с водой. Делительную воронку 2 заполняют водой, а трубку с медной сеткой сильно нагревают. Выде ляющиеся пузырьки газа сразу не следует собирать в цилиндр. После того как выделение газа прекратилось, цилиндр помещают на газоотводную трубку. В левый цилиндр начинают приливать воду с такой скоростью, чтобы на вытес нение 500 мл воздуха потребовалось 10—15 мин. После приливания 500 мл воды кран воронки закрывают. В правом цилиндре 5 собирается только 4 /5 вытесненного объема воздуха.

Пробку с газоотводной трубкой 4 отделяют от реакционной трубки, после чего прекращают нагревание.

Заслуживают внимания опыты по определению состава воздуха с использованием медицинских шприцев. В настоящее время для учебных целей созданы специальные шприцы — стеклянные поршневые дозаторы. С их помощью могут быть выполнены многие количеств венные опыты, в том числе и по определению состава воздуха. Для наглядности их следует использовать при проецировании некоторых опытов на экран с помощью графопроектора .

Статья на тему Синтез воды


источники:

http://www.calc.ru/Vodorod-Polucheniye-Vodoroda.html

http://znaesh-kak.com/x/h/%D1%81%D0%B8%D0%BD%D1%82%D0%B5%D0%B7-%D0%B2%D0%BE%D0%B4%D1%8B