Измерительные механизмы магнитоэлектрической системы уравнение шкалы

Магнитоэлектрические приборы

Устройство. Магнитоэлектрические приборы (МЭП) состоят из ИЦ, ИМ и ОУ

(см. рис.2.1) Конструктивно измеритель­ный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На рис. 2.2 показана конструкция прибора с подвижной катушкой.

Рис.2.2. Устройство магнитоэлектрического прибора.

Постоянный магнит 1, магнитопровод с полюсными наконечниками 2 и неподвижный сердечник 3 составляют магнитную систему механизма. В зазоре между полюсными наконечниками и сердеч­ником создается сильное равномер­ное радиальное магнитное поле, в ко­тором находится подвижная прямо­угольная катушка 4, намо­танная медным или алюминиевым проводом на алюминиевом каркасе (применяют и бескаркасные рамки). Катушка (рамка) может поворачиваться в зазоре на полуосях 5 и 3. Спиральные пружины 7 и 8 создают противодействующий момент и используются для подачи измеряемого тока от выходных зажимов прибора в рамку (механические и электрические соединения на рисунке не показаны) Рамка жестко соединена со стрелкой 9. Для балансировки подвижной части имеются передвижные грузики 10.

Принцип действия.Проходя по проводникам обмотки рамки, ток I взаимодействует с магнитным потоком постоянного магнита, что вызывает появление механических сил F, создающих вращающий момент Мвр для рамки. Из теоретических основ электротехники известно выражение для механической работы, совершаемой при перемещении проводника с током в магнитном поле:

где F— сила, действующая на проводник в направлении элементарного перемещения dα; dWМ — изменение запаса энергии магнитного поля.

Если проводник движется по окружности с радиусом r, то

где dα — элементарный угол поворота.

Здесь Fr— вращающий момент — МВР, т. е.

Тогда окончательно запишем:

Это уравнение является обобщенным выражением вращающего момента для всех приборов, в которых используют сила электромагнитного поля

Противодействующий момент в приборах необходим для создания однозначного соответствия измеряемой величины определенному углу отклонения подвижной части. В аналоговых электромеханических приборах противодействующий момент создается либо при помощи спиральных пружин (растяжек и подвесов), либо за счет энергии электромагнитного поля (в логометрах).

В случае, когда противодействующий момент соз­дается спиральной пружинкой

где W – удельный противодействующий момент, зависящий от геометрических размеров и материала пружины (растяжек)

Уравнение шкалы.Выражение для вращающего момента, действующего на рамку при протекании по ней тока I, мо­жет быть получен, исходя из обобщенного выражения вращаю­щего момента (2.1). Запас электромагнитной энергии в контуре с током I, нахо­дящемся в поле постоянного магнита, выражается формулой:

где Ψ— полное потокосцепление данного контура с магнитным полем постоянного магнита. Тогда

При повороте рамки на угол dα каждая ее сторона опишет дугу dα·b/2, пересекая при этом силовые линии магнитного поля; число пересеченных линий будет равно произведению пройденного пути dα·b/2 на длину активной стороны рамки l и на индук­цию в зазоре В.

Полное изменение потокосцепления с рамкой равно произве­дению числа силовых линий, пересеченных обеими сторонами рамки, на число витков ее обмотки, т. е.

где ω — число витков обмотки.

Произведение·Βl равно площади рамки; обозначив еечерез S,получим:

Если положить dα =1 рад, то произведение BSω — величина постоянная для каждого данного прибора — будет равна измене­нию потокосцепления при повороте рамки на 1 рад. Обозначая его через Ψ0, запишем:

Подставляя выражение (2.5) формулу (2.3), получим вы­ражение вращающего момента для магнитоэлектрического меха­низма в следующем виде:

Установившееся положение подвижной катушки наступает при равенстве вращающего и противодействующего моментов? МВР = МПР, т.е. с учетом (2.2) запишем:

Отсюда находим уравнение шкалы измерительного механизма магнитоэлектрической системы

где величина S = Ψ0 / W является чувствительностью прибора (в радианах на ампер).

Используя выражение (2.4) можно ввести в уравнение шкалы конструктивные параметры измерительного механизма:

α = Bsω Ι · 1/W, (2.9)

т.е. угол отклонения подвижной части прямо пропорционален току в рамке, поэтому магнитоэлектрические приборы имеют равномерные шкалы.

Успокоение подвижной части магнитоэлектрических приборов магнитоиндукционное, т.е. создается взаимодействием магнитных полей от вихревых токов в каркасе рамки и поля постоянного магнита.

Метрологические характеристики MЭП: классы точности – 0,05; 0,1 и т.д., равномерная шкала, высокая и стабильная чувствительность, малое собственное потребление мощности, большой диапазон измерений, большой МВР, успокоение только магнитоиндукционное.

Эксплуатационные характеристики: возможность использования только в цепях постоянного тока, малая нагрузочная способность, сложны и дороги, на показания прибора влияет температура, но не влияют внешние магнитные и электрические поля.

Гальванометры постоянного тока. На рис. 2.5 показано устройство магнитоэлектрического гальванометра постоянного тока. Сильный постоянный магнит 1 из высококоэрцетивного сплава, полюсные наконечники 2 из магнитомягкой стали с

Рис. 2.5. Устройство магнитоэлектрического гальванометра.

цилиндрической расточкой концов, неподвижный стальной цилиндр 3 , укрепленный в расточке, служат для создания в зазоре сильного равномерного магнитного поля. В этом зазоре находится рамка 4,укрепленная на подвесе 5; ток подводится через безмоментные спирали 3. На оси рамки закреплено зеркальце 7 для оптического отсчета угла отклонения рамки от нулевого положения.

На рамку, при подаче тока I действуют моменты: вращающий МВР (2.6), успокоения МУ = − Р dα/dt, направленный в сторону, противоположную МВР. и противодействующий момент, создаваемый при закручивании подвеса МПР = Wα.

Величина P = Ψ0 / (RГ + RВН) называется коэффициентом успокоения и определяется конструктивными параметрами гальванометра Ψ0, RГ и сопротивлением внешней цепи RВН. Изменяя RВН можно изменять коэффициент успокоения.

Известно, что движение вращающегося тела определяется уравнением

где J – момент инерции тела; d 2 α/dt 2 – угловое ускорение; ΣM – сумма вращающих моментов, действующих на тело.

Для гальванометра это уравнение имеет вид:

Подставляя в уравнение (2.15) значения моментов с учетом их знака получим дифференциальное уравнение движения подвижной рамки гальванометра:

Интеграл этого дифференциального уравнения второго порядка с постоянными коэффициентами и с правой частью, как известно, состоит из двух членов: αС –частного решения при заданных условиях и α0 – общего решения данного уравнения без правой части, т.е.

Частное решение уравнения (2.16), рассмотренное для случая установившегося равновесия подвижной части гальванометра, когда скорость ее движения (dα/dt ) и ускорение (d 2 α/dt 2 ) будут равны нулю, через выражение (2.7) получим

Уравнение (2.16) без правой части для получения общего решения имеет вид:

Решением его будет функция

Где С1 и С2 постоянные интегрирования, получаемые из начальных условий; Х1 и Х2 – корни характеристического уравнения

JX 2 + PX + W = 0 (2.21)

Нахождение этих корней и подстановка их в выражение (2.19) и далее полученного значения α0 в (2.17) дает искомое уравнение движения подвижной части гальванометра:

График функции (2.22) для различных значений сопротивления нагрузки приведен на рис.2.3.

Рис.2.3. Режимы движения подвижной части гальванометра.

При RВН = ∞ колебания подвижной части гальванометра будут постепенно, хотя и медленно, затухать из-за трения подвижной рамки о воздух (кривая 1) и режим движения рамки — колебательный.

Дата добавления: 2016-03-22 ; просмотров: 2472 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Измерительные механизмы магнитоэлектрической системы уравнение шкалы

В измерительных механизмах магнитоэлектрической системы вращающий момент создается взаи­ модействием измеряемого постоянного тока в катушке механизма с полем постоянного магнита. Существуют два основных типа приборов магнитоэлектрической системы: приборы с подвижной катушкой (подвижной рамкой) и приборы с подвижным магнитом, причем первые применяются значительно чаще, чем вторые.

В магнитоэлектрическом механизме с подвижной катушкой, рис. 1, последняя установлена на опорах и может поворачиваться в воздушном зазоре магнитной цепи постоянного магнита 1 (см. механизм магнито-электрической системы ).

Угол между направлениями вектора магнитной индукции В в воз душном зазоре и тока I в активной части проводников (длинная сторона рамки) длиной l по­движной катушки равен 90°. Следовательно, на каждый из проводни ков действует электромагнитная сила

F = В· I · l , а на подвижную часть механизма — вращающий момент

где d — диаметр каркаса катушки с числом витков w и площадью по­перечного сечения S = l · d ; квр = w · S · d коэффициент пропорциональ ности.

Так как противодействующий момент, создаваемый спиральными пружинами, прямо пропорционален углу закручивания α, т. е. Мпр = кпр · α, то угол поворота катушки при равенстве моментов Мвр= Мпр прямо пропорционален измеряемому току:

где Спр постоянная прибора («цена деления»).

Постоянный магнит создает сильное магнитное поле в воздушном зазоре магнитной цепи прибора (0,2—0,3 Тл), и даже при малых зна­ чениях измеряемых токов можно получить достаточный вращающий момент Мвр . Поэтому магнитоэлектрические приборы весьма чувствитель­ ны, внешние магнитные поля мало влияют на их показания, и их соб ственное потребление энергии относительно мало. В частности, галь­ ванометры в большинстве случаев изготовляются магнитоэлектри­ ческой системы. Высокая чувствительность прибора позволяет умень­ шить плотность тока в токоведущих частях. Поэтому магнитоэлектри­ ческий прибор достаточно вынослив к перегрузкам. Этому способ­ ствует также линейная зависимость его вращающего момента от тока, а не квадратичная, характерная для большинства других си­ стем приборов.

§ 96. Магнитоэлектрические приборы

Устройство и принцип действия.

Магнитоэлектрический измерительный механизм (рис. 321,а) выполнен в виде постоянного магнита 1, снабженного полюсными наконечниками 2, между которыми укреплен стальной сердечник 3. В кольцеобразном воздушном зазоре, образованном полюсными наконечниками и сердечником, помещена подвижная катушка 5, намотанная на алюминиевый каркас 6 (рис. 321,б). Катушка выполнена из очень тонкого провода и укреплена на оси, связанной со стрелкой спиральными пружинами 4 или растяжками. Через эти же пружины или растяжки осуществляется подвод тока к катушке.

Рис. 321. Устройство магнитоэлектрического измерительного механизма

При прохождении тока I по катушке на каждый из ее проводников будет действовать электромагнитная сила. Суммарное действие всех электромагнитных сил создает вращающий момент М, стремящийся повернуть катушку и связанную с ней стрелку прибора на некоторый угол α. Так как индукция В магнитного поля, создаваемого постоянным магнитом, неизменна и не зависит от тока I, то:

где c1 — постоянная величина, зависящая от конструктивных параметров данного прибора (числа витков катушки, ее размеров, индукции В в воздушном зазоре).

Повороту подвижной части измерительного механизма препятствует противодействующий момент Мпр, создаваемый спиральными пружинами или растяжками. Этот момент пропорционален углу закручивания, т. е. углу поворота α подвижной части, при этом:

где c2 — постоянная величина, зависящая от жесткости спиральных пружин или растяжек.

Поворот подвижной части измерительного механизма и стрелки будет продолжаться до тех пор, пока вращающий момент М, создаваемый током I, не уравновесится противодействующим моментом Мпр. В момент равновесия М = Мпр, откуда получим:

Следовательно, угол поворота в подвижной части пропорционален измеряемому току I. Поэтому магнитоэлектрические приборы имеют равномерную шкалу.

Постоянная величина к называется чувствительностью прибора, она характеризуется углом поворота стрелки в градусах или в делениях шкалы, приходящимся на единицу изменения измеряемой величины.

Величина, обратная чувствительности, c=1/к называется постоянной прибора, или ценой деления. Если умножить отсчет по шкале на цену деления прибора с, то можно определить значение измеряемой величины. Для устранения колебаний подвижной системы прибора при переходе стрелки из одного положения в другое электроизмерительные приборы снабжают воздушными или магнитно-индукционными демпферами.

Воздушный демпфер (рис. 322, а) выполнен в виде цилиндрической камеры, внутри которой перемещается крыло 1 в виде поршня, связанного с подвижной системой. При перемещении подвижной части происходит торможение движущегося в камере 2 крыла, и колебания подвижной части быстро затухают.

Магнитно-индукционный демпфер (рис. 322, б) выполнен в виде неподвижного постоянного магнита 3, который при повороте подвижной системы прибора индуцирует вихревые токи в металлическом (алюминиевом) секторе 4, установленном на оси прибора.

Взаимодействие этих токов с магнитом создает согласно правилу Ленца силу, тормозящую подвижную систему и обеспечивающую быстрое затухание колебаний стрелки. В магнитоэлектрических приборах роль демпфера выполняет алюминиевый каркас 6 катушки (см. рис. 321,б).

При повороте подвижной части прибора изменяется магнитный поток, пронизывающий каркас катушки. Благодаря этому в каркасе индуцируются вихревые токи, взаимодействие которых с магнитным полем магнита создает тормозной момент, обеспечивающий быстрое успокоение подвижной части.

Рис. 322. Воздушный (а) и магнитно-индукционный (б) демпферы

Для того чтобы любой электроизмерительный прибор обеспечил требуемую точность измерений, необходимо, чтобы отклонение подвижной системы прибора определялось только вращающим моментом, создаваемым катушкой, и противодействующим усилием пружины. Для устранения влияния силы тяжести, создающей погрешности при измерениях, подвижную систему прибора (рис. 323) уравновешивают противовесами 5 (рис. 323, а), представляющими собой стержни с перемещающимися по ним грузиками.

Рис. 323. Устройство подвижной части электроизмерительного прибора

Для уменьшения влияния трения оси приборов снабжают тщательно отполированными стальными наконечниками 1, выполненными из материала с высокой износостойкостью (закаленная сталь, вольфрамо-молибденовый сплав и пр.). Наконечники вращаются в подпятниках 4, выполняемых с вкладышами 2 из корунда, агата, рубина и т. п. Зазоры между наконечниками и подпятником регулируются стопорным винтом 3.

Электроизмерительные приборы обычно снабжают корректором — приспособлением, позволяющим устанавливать стрелку в нулевое положение. Корректор состоит из винта 6, выходящего из корпуса, и поводка 7, при помощи которых можно смещать на некоторое расстояние точку закрепления спиральной пружины 8, создающей противодействующее усилие.

В большинстве современных электроизмерительных приборов подвижная часть 11 подвешивается на двух растяжках 10 — упругих металлических лентах, которые служат для подвода тока к катушке прибора и одновременно создают противодействующий момент (рис. 323,б). Растяжки прикреплены к двум плоским пружинам 9 и 12, расположенным во взаимно перпендикулярных плоскостях.

Кроме рассмотренного выше измерительного механизма с внешним (по отношению к катушке) постоянным П-образным магнитом, существуют механизмы с магнитами другой формы (цилиндрической, в виде призмы, а также с внутрирамочными неподвижными и подвижными магнитами).

Применение прибора.

Приборы магнитоэлектрической системы применяют для измерения тока и напряжения в электрических цепях постоянного тока. В частности, на э.п.с. и тепловозах их используют в качестве амперметров и вольтметров. В амперметрах и вольтметрах катушка прибора имеет различное сопротивление и включается по различным схемам (см. § 101).

Для уменьшения проходящего по катушке тока и компенсации влияния температуры на показания прибора в вольтметрах последовательно с катушкой включают добавочный резистор, который обычно встраивается в корпус прибора. Сопротивление этого резистора значительно больше сопротивления катушки, и он выполнен из материала, электрическое сопротивление которого весьма мало зависит от температуры (константан, манганин и пр.). В амперметрах параллельно катушке прибора часто включают образцовый резистор, называемый шунтом.

Сопротивление шунта значительно меньше сопротивления катушки прибора, вследствие чего измеряемый ток в основном проходит по шунту. Шунты и добавочные резисторы служат для расширения пределов измерения приборов.

Из принципа действия магнитоэлектрического прибора следует, что направление отклонения его стрелки зависит от направления тока I, проходящего по катушке. Следовательно, при включении этих приборов в цепь постоянного тока должна быть соблюдена правильная полярность, при которой стрелка отклоняется в требуемую сторону.

Для переменного тока магнитоэлектрические приборы непригодны, так как при питании катушки переменным током среднее значение создаваемого ею вращающего момента равно нулю и стрелка прибора будет стоять на нуле, испытывая чуть заметные колебания.

Достоинством приборов магнитоэлектрической системы являются равномерность шкалы, высокая точность и независимость показаний от посторонних магнитных полей. К недостаткам их относятся непригодность для измерения переменного тока, необходимость соблюдения полярности при включении и чувствительность к перегрузкам (при перегрузке тонкая проволока катушки и спиральные пружины, подводящие к ней ток, могут сгореть).


источники:

http://www.sites.google.com/site/elizmpribor/Home/klassifikacia-el-izm-priborov/magnitoelektriceskaa-sistema

http://electrono.ru/elektroizmeritelnye-pribory-i-metody-izmerenij/96-magnitoelektricheskie-pribory