Изобразить на комплексной плоскости точки удовлетворяющие уравнению

Решение неравенств с комплексными переменными

Рассмотрим задачи на нахождение областей в комплексной плоскости, заданных неравенствами. Чтобы решить данные неравенства с комплексными числами, вначале необходимо перейти к декартовым координатам, т.е. перейти к действительному представлению.

Чтобы представить комплексное число в действительной форме, нужно заменить комплексную переменную z действительными переменными x и y, а именно z = x + iy, где
x = Re(z), y = Im(z).

Пример 1. Найти на комплексной плоскости множество точек, удовлетворяющих неравенству

Геометрическая интерпретация комплексных чисел

Разделы: Математика

Цели:

  • учащиеся должны уметь изображать на комплексной плоскости множество точек, удовлетворяющих заданным условиям;
  • учащиеся должны знать, что геометрическая интерпретация комплексных чисел может быть различной: прямая, часть плоскости, кольцо, параболы, гиперболы, окружности;
  • у учащихся должно быть сформировано понятие о связи комплексных чисел и точек координатной плоскости;
  • развитие речи и логического мышления.

I. Организационный момент.

II. Устная работа.

III. Основная часть.

IV. Итог урока и домашнее задание.

1. Назовите действительную и мнимую части комплексного числа:

I

– 2i

– 6i

2. При каком значении X действительная часть комплексного числа равна нулю:

3. Найдите произведение комплексных чисел:

4. Разложите число Z на комплексно сопряженные множитель (а и b – действительные числа):

5. Назовите комплексное число, сопряженное с данным числом:

i

i

6. Найдите модуль комплексного числа:

Устно. Назовите действительную и мнимую части комплексного числа:

3. Imz 0;

4. Rez 0.

Задание № 1. Изобразите на координатной плоскости множество всех комплексных чисел Z, удовлетворяющих заданному условию:

а) действительная часть равна – 2;

б) мнимая часть равна – 3 или 4;

Задание № 2. Изобразите на координатной плоскости множество всех комплексных чисел Z, удовлетворяющих заданному условию:

а) действительная часть на 4 больше мнимой части;

б) сумма действительной и мнимой части равна 4;

в) сумма квадратов действительной и мнимой частей равна 4;

г) квадрат суммы действительной и мнимой частей равен 4.

Устно. Найдите изображение соответствующего множества всех комплексных чисел Z, у которых:

ReZ 2 и (ReZ) 2 ImZ

б) ImZ 2 ReZ или ReZ 25.03.2008

Комплексная плоскость

Комплексная плоскость — это плоскость с прямоугольной декартовой системой координат xOy.

Комплексные числа на этой плоскости изображаются в виде точек либо в виде векторов.

I. Геометрическая интерпретация комплексных чисел в виде точек на комплексной плоскости

Каждому комплексному числу z=a+bi на комплексной плоскости соответствует точка z(a;b).

И наоборот, каждую точку z(a;b) плоскости можно считать изображением комплексного числа z=a+bi.

Таким образом, геометрическое изображение комплексных чисел в виде точек координатной плоскости устанавливает взаимно однозначное соответствие между комплексными числами и точками плоскости.

Действительные числа z=a+0i на комплексной плоскости изображаются точками с координатами (a;0) (лежащими на оси Ox), чисто мнимые числа z=0+bi — точками с координатами (0;b) (на оси Oy).

Поэтому ось абсцисс Ox называют действительной осью, а ось ординат Oyмнимой осью.

Комплексно-сопряженные числа на плоскости изображаются точками, симметричными относительно оси Ox; противоположные комплексные числа — точками, симметричными относительно точки O (начала координат).

Комплексную плоскость называют также плоскостью Гаусса.

Геометрическая интерпретация комплексных чисел в виде радиус-векторов

Комплексные числа изображаются также векторами с началом в точке O и концом в точке z(a:b) (радиус-векторами).

Соответствие между комплексными числами и радиус-векторами также является взаимно однозначным.

Геометрически сумма комплексных чисел в виде радиус-векторов строятся по правилу параллелограмма сложения векторов.

Геометрически комплексные числа также можно вычитать, как векторы.

На комплексной плоскости удобно изображать различные множества комплексных чисел, удовлетворяющие заданным условиям.


источники:

http://urok.1sept.ru/articles/514604

http://www.matematika.uznateshe.ru/kompleksnaya-ploskost/