Изобразить на плоскости фигуру заданную уравнением

Уравнения фигур

Уравнение фигуры — это уравнение с двумя переменными x и y, для которого выполняются два условия: 1) координаты любой точки фигуры F удовлетворяют этому уравнению.

Содержание:

Понятие уравнения фигур

Название этого раздела означает: геометрические фигуры можно задавать уравнениями (некоторые фигуры можно задавать неравенствами).

Известно, что точки плоскости и пространства задаются их координатами, геометрические фигуры могут задаваться уравнениями или неравенствами: — уравнение прямой; — уравнение окружности; — уравнение сферы и т. д.

Говорят, что фигура F задается уравнением в прямоугольных координатах, если точка принадлежит фигуре F тогда и только тогда, когда координаты этой точки удовлетворяют данному уравнению. Это означает, что выполняются два условия:

1. Если точка принадлежит фигуре F, то ее координаты удовлетворяют данному уравнению.

2. Если числа х, у, г удовлетворяют данному уравнению, то точка с такими координатами принадлежит фигуре F.

Второе условие можно выразить иначе: координаты любой точки, не принадлежащей фигуре F, не удовлетворяют данному уравнению.

Например, прямая, перпендикулярная оси Ох и проходящая через точку М(2, 0), на оси Ох задается уравнением х = 2 (рис. 2.461). Действительно, каждая точка, лежащая на этой прямой, имеет одну и ту же координату 2. А любая точка, не лежащая на этой прямой, имеет другое значение координаты х, нежели 2. Ось Оу задается уравнением х = 0.

Аналогично прямая, перпендикулярная оси Оу и проходящая через точку Щ0, 3), имеет уравнение у = 3 (рис. 2.462). Ось Ох имеет уравнение у = 0.

Уравнение прямой

Можно доказать такую теорему.

Теорема 3. Любая прямая в декартовой системе координат хОу имеет уравнение вида — некоторые числа.

Выясним, как расположена прямая относительно осей координат, если ее уравнение имеет тот или иной частный вид.

1. В этом случае уравнение прямой можно переписать так:

Таким образом, все точки прямой имеют одну и ту же ординату ; следовательно, прямая параллельна оси х (рис. 2.463). В частности, если с = 0, то прямая совпадает с осью Ох.

2. Этот случай рассматривается аналогично. Прямая параллельна оси Оу (рис. 2.464) и совпадает с ней, если и с = 0.

3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 2.465).

Если в общем уравнении прямой коэффициент при у не равен нулю, то это уравнение можно разрешить относительно у. Получим: Или, обозначая получим: у = kх + d.

Коэффициент k в уравнении прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью Ох. В уравнении прямой, изображенной на рисунке 2.466, k > 0.

Коэффициент k в уравнении прямой называют угловым коэффициентом прямой.

Уравнения окружности и сферы

Составим уравнение окружности с центром в точке и радиусом R (рис. 2.467).

1. Возьмем произвольную точку А(х, у) на окружности. Расстояние от нее до центра О равно R.

2. Квадрат расстояния от точки А до точки О равен (формула расстояния между точками).

3. Координаты х, у каждой точки А окружности удовлетворяют уравнению

(2, определение окружности).

Получили искомое уравнение. Обратно: любая точка А, координаты которой удовлетворяют уравнению окружности, принадлежит окружности, так как расстояние от нее до точки О равно R. Отсюда следует, что данное уравнение действительно является уравнением окружности с центром в точке О и радиусом R.

Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:

Выведем теперь уравнение сферы. Пусть в пространстве введена прямоугольная система координат и задана сфера S с центром и радиусом R. Эта сфера есть множество точек М, для которых расстояние от А равно R, т. е. AM = R (рис. 2.468).

Пусть х, у, z — координаты точки М. Согласно формуле расстояния между точками в пространстве, предыдущее равенство можно записывать в координатах так:

Это и есть уравнение сферы S с центром и радиусом R, т. е. множество точек, координаты которых удовлетворяют данному уравнению, представляет собой сферу S (рис. 2.468).

Если центр А находится в начале координат, т. е. то уравнение получает простой вид:

Рассмотрим шар с центром и радиусом R (рис. 2.469).

По определению, это множество точек М, для которых , т. е. . Выражая расстояние AM через координаты точки М(х, у, z), получим:

Это неравенство задает шар S с центром и радиусом R, так как оно равносильно неравенству , задающему такой шар по самому его определению.

Если центр шара находится в начале координат, то уравнение шара упрощается и имеет вид:

Два предприятия A и В производят продукцию с одной и той же ценой т за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 руб. на 1 км, а для предприятия В 20 руб. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть разделен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными?

Решение:

1. Выберем систему координат так, чтобы ось Ох проходила через пункты А и В, а ось Оу — через точку А (построение) (рис. 2.470).

2. Пусть N — произвольная точка, — расстояния от точки N до предприятий А и Б (рис. 2.471).

3. При доставке груза из пункта А расходы равны (1,2).

4. При доставке груза из пункта Б расходы равны (1,2).

5. Если для пункта N выгоднее доставлять груз с предприятия А, то откуда , в обратном случае получим (3,4).

6. Таким образом, границей этих двух областей для каждой точки, до которой расходы на перевозку груза из пунктов А и Б равны, будет множество точек плоскости, удовлетворяющих уравнению (5)

7. Выразим через координаты:

(1,2, формула расстояния между точками).

8. Имея в виду равенство из п. 6, получим:

(6,7).

9. Это есть уравнение окружности (рис. 2.472).

Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, — из пункта А.

Пример 2.

Два наблюдаемых пункта находятся в точках Пункт наблюдения О находится на прямой АВ и удален от точки А на расстояние км, а от В на расстояние с км (с > ). Наблюдатель для безопасности должен идти по такому пути, чтобы расстояние от него до пункта А все время оставалось в два раза больше, чем расстояние от него до пункта В. По какой линии должен идти наблюдатель?

Решение:

Из условий задачи имеем:

1. Два наблюдаемых пункта находятся в точках

2. Пункт наблюдения О находится на прямой АВ и удален от А на расстоянии км, а от В — с км (с > ).

3. Наблюдатель идет так, чтобы расстояние до пункта А было в два раза больше, чем до В.

4. По какой линии должен идти наблюдатель?

5. Примем за начало координат наблюдательный пункт О и направление оси Ох будет проходить через пункты А и В (по условию задачи эти три точки находятся на одной прямой) (рис. 2.473).

6. Пусть наблюдатель находится в точке М(х, у). Вычислим расстояние от наблюдателя до пунктов А и В (рис. 2.473):

(1, 2, 3, 5, формула расстояния между точками).

7. По условию задачи имеем: МА = 2MB, т. е.

(3, 6).

8. Решая это уравнение, получим:

9. Раскроем скобки и перегруппируем:

10. Наблюдатель должен идти по окружности с центром и радиусом (4, уравнение окружности).

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Множество точек. Изображение некоторых множеств точек на плоскости.

Представим на координатной плоскости множество точек, удовлетворяющих условию х = 5 и х = -4,

В первом случае прямые параллельны оси ординат, во втором – абсцисс.

На прямой может быть расположено неограниченное количество точек. И у всего этого множества точек, координаты удовлетворяют условиям х = 5 и х = -4; у = -4 и у = 1.

На координатной прямой неравенству х 3. Проанализируем, что это за точки:

множество точек, абсцисса которых больше или равна 3

— точки, лежащие правее прямой х = 3 и на прямой.

Алгоритм построения будет иметь вид:

— строим в координатной плоскости прямую: х = 3;

— определяем, где будут находиться точки, абсцисса которых больше 3; ответ – правее;

— множество всех точек удовлетворяющих условию х > 3 покажем при помощи штриховки;

х > 3 задает полуплоскость, находящаяся правее прямой х = 3 и все точки этой прямой. Прямую изображаем одной цельной линией, этим указываем, что все точки расположенные на прямой так же включены во множество.

Представим множество точек, удовлетворяющих условию у 1.

Постройте множество точек у > 1. По аналогии, точкам этого множества присуще свойство — у них ордината больше 1.

Следовательно, они будут находиться выше прямой у = 1. В соответствии со знаком неравенства точки прямой у = 1 не удовлетворяют условию y > 1. Графически мы это покажем, изобразив прямую у = 1 пунктиром.

Представим множество точек, соответствующих условию у > 1 так:

Представим на координатной плоскости множества точек, соответствующих условию: -2 ≤ х ≤ 2.

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №43.Нелинейные уравнения и неравенства с двумя переменными.

Перечень вопросов, рассматриваемых в теме:

  • уравнение и неравенство, способы их решения;
  • система уравнений, система неравенств;
  • изображение в координатной плоскости множество решений уравнений, неравенств, систем уравнений, систем неравенств и нахождение площади получившейся фигуры;

Глоссарий по теме

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Сегодня на уроке мы вспомним нелинейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое нелинейным уравнением и неравенством.

1.Линейные уравнения с двумя переменными.

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Например, нелинейные уравнения с двумя переменными. Уравнение с двумя переменными можно заменить равносильным уравнением, в котором правая часть будет нулем, а левая многочленом стандартного вида:

Нелинейные уравнения с двумя переменными изображаются на координатной плоскости различными фигурами, каждое уравнение нужно рассматривать индивидуально.

Найти множество точек координатной плоскости, удовлетворяющих уравнению:

Уравнение запишем в виде (х-у)(х+у) = 0, значит либо х-у=0, либо х

+у=0. Поэтому множество точек удовлетворяющих уравнению – пара пересекающихся прямых.

Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

Сумма неотрицательных слагаемых равна 0 только в одном случае, когда оба слагаемых одновременно равны 0.

Это уравнение имеет единственное решение: х=2; у=-3. Поэтому множество точек удовлетворяющих уравнению – точка (2;-3).

Пусть на координатной плоскости Оху выбрана точка А(а;b), М(х;у) – произвольная точка этой плоскости, R- расстояние от точки М до точки А. Тогда , где R>0. Уравнение окружности с радиусом R и с центром в точке А(а;b).

Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.

Рассмотрим примеры уравнений с двумя переменными, содержащих знак модуля:

Если то х+у=2 Множество решений этого уравнения часть прямой (отрезок АВ), где А(2;0), В(0;2)

Аналогично строятся отрезки в трех оставшихся координатных углах. (рисунок 1)

Рисунок 1 – графика

2.Нелинейные неравенства с двумя переменными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

  1. Некоторые из таких неравенств можно привести к виду у f(x), а нижняя – графиком неравенства у 0 удовлетворяют все те точки, которые находятся от точки А на расстоянии меньшем R, те все точки и только они, расположенные внутри окружности с радиусом R и центром в точке А(а;b). Аналогично, множество решений неравенства есть множество точек , лежащих вне окружности.

Изобразите в координатной плоскости множества решений неравенства .

  1. Начертим график уравнения . Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.
  2. Искомое множество решения неравенства – множество точек, лежащих на окружности и внутри окружности с центром в точке (-1;4) и радиусом 3 единичных отрезка.

3. Системы нелинейных уравнений с двумя переменными.

Система вида , где а,b,с,d,e,f – некоторые числа, называется линейной системой с двумя переменными х и у.

Все системы уравнений, которые не являются линейными называются нелинейными.

Пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство называют решением системы.

Решить систему – значит найти множество ее решений.

Каждое решение уравнения с двумя переменными представляет координаты некоторой его точки его графика. Каждое решение системы есть координаты общих точек графиков уравнений системы. Построим графики этих уравнений и найдем координаты точек пересечения.
Например.

Решить систему уравнений

Первое уравнение системы задает параболу, второе – окружность с центром (-1;3) и радиусом . Окружность и парабола имеют две общие точки (0;1) (-1,3;5,3). Координаты второй точки приближенные (рисунок 2).

Рисунок 2 – решение системы

4. Системы нелинейных неравенств с двумя переменными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Рассмотрим систему нелинейных неравенств с двумя переменными на примере:

Изобразить на координатной плоскости Оху фигуру Ф, заданную системой неравенств, и найти площадь фигуры:

Неравенство заменим равносильной системой которая задает множество точек, лежащих на полуокружности и вне ее. А неравенство заменим равносильной совокупностью систем или (рисунок 3)

Рисунок 3 – решение системы

  1. Найти множество точек координатной плоскости, удовлетворяющих уравнению .(рисунок 4)

График уравнения х^2 можно получить из окружности сжатием к оси х в 2 раза.

Рисунок 4 – график уравнения

Заметим, что фигуру, которая получается сжатием окружности к одному из ее диаметров, называют эллипсом.

  1. Уравнение вида — уравнение ромба , где точка (a;b) точка пересечения диагоналей; диагонали ромба соответственно равны .

Рассмотрим частный случай:

Если k=m, то диагонали ромба будут равны, значит заданная фигура – квадрат.

Примеры и разборы решений заданий тренировочного модуля

Графиком данного уравнения является парабола, показанная на рисунке.(рисунок 5)

Рисунок 5 – график

Изобразите в координатной плоскости множества решений неравенства (рисунок 6)

Начертим график уравнения . Графиком данного уравнения является парабола. Нижняя из образовавшихся областей является графиком неравенства

Проверим себя: Например, пара (0;0) является решением неравенства , и принадлежит нижней из образовавшихся областей, значит графиком неравенства 2х+3у Назад Вперёд


источники:

http://www.calc.ru/Mnozhestvo-Tochek-Izobrazheniye-Nekotorykh-Mnozhestv-Tochek-.html

http://resh.edu.ru/subject/lesson/6123/conspect/