Изопроцессы уравнение майера уравнение пуассона

Первое начало термодинамики. Применение I начала термодинамики к изопроцессам. Адиабатный процесс. Уравнение Пуассона. Скорость звука в газах.

Первое начало термодинамики является обобщением закона сохранения и превращения энергии для тепловых процессов. Первое начало было установлено, после того как экспериментально была доказана взаимосвязь теплоты и работы.

Первое начало термодинамики: количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

(1)

где dQ – элементарное количество теплоты, dA – элементарная работа, dU – приращение внутренней энергии.

Если dQ > 0 система получает теплоту, dQ 0 – система выполняет работу над внешними телами, dA 0, если тепловой поток направлен в сторону термодинамической системы. Величина A > 0, если система совершает положительную работу над окружающими телами.

Рис.1. Обмен энергией между термодинамической системой и окружающими телами в результате теплообмена и совершаемой работы.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую.

Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии (рис.2).

Рис.2. Циклически работающие тепловые машины, запрещаемые первым законом термодинамики: 1 – вечный двигатель 1 рода, совершающий работу без потребления энергии извне; 2 – тепловая машина с коэффициентом полезного действия η > 1.

Внутренняя энергия изолированной системы постоянная величина. Для такой системы dQ = 0, dA = 0, следовательно, dU = 0 и значит U = const.

Какие бы процессы не протекали в изолированной системе, ее внутренняя энергия остается постоянной.

Если незамкнутая система выполняет круговой процесс, т.е. в результате его система возвращается в первоначальное состояние, то dU = U2U1 = 0, следовательно, из (1) dQ = dA. То есть вся теплота, полученная системой, идет на выполнение работы. Отсюда вытекает невозможность создания вечного двигателя первого рода.

Применим I начало термодинамики к изопроцессам.

1). Изотермический процесс: T = const.

Внутренняя энергия идеального газа определяется выражением:

(2)

где CV – молярная теплоемкость при постоянном объеме. Определим изменение внутренней энергии.

(3)

Если T = const, то dU = 0 и из I начала термодинамики получим:

Теплота, полученная системой, идет на выполнение работы над внешними телами. Определим величину этой работы (рис.3).

Рис.3. Работа при изотермическом процессе

Элементарная работа определяется выражением:

Из уравнения Клапейрона-Менделеева:

(4)

Проинтегрировав (4) найдем работу:

(5)

Работа численно равна площади под кривой 1 → 2. При расширении V2 > V1, и A12 > 0 система выполняет работу. При сжатии V2 V1 и A12 > 0, газ выполняет работу. При сжатии V2 T1, то Q12 > 0 газ получает тепло и его внутренняя энергия увеличивается, а если T2

|следующая лекция ==>
Устройство пола из древесины|Политропический процесс. Теплоемкость. Принцип равномерного распределения энергии по степеням свободы и границы его применимости.

Дата добавления: 2015-05-21 ; просмотров: 7337 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение Майера

Уравнение Майера связывает теплоемкости идеального газа в двух изопроцессах, тогда перейдем к самому его определению.

Теплоемкость. Уравнение Майера

Переданное телу количество теплоты для его нагревания на 1 К получило название теплоемкости тела данной системы. Обозначение принимается буквой » С » :

Значение теплоемкости единицы молярной массы тела:

c μ = C v ( 2 ) . Выражение называется молярной теплоемкостью.

Теплоемкость не считается функцией состояния, так как является характеристикой бесконечно близких состояний системы или выражается в качестве функции бесконечно малого процесса, совершаемого в системе. В количественном выражении это означает, что из ( 1 ) , применяя первое начало термодинамики, дифференциальная форма получится:

C = δ Q d T = d U + p d V d T ( 3 ) .

Уравнение Майера для идеального газа

Определение термодинамической системы производится при помощи трех параметров p , V , T . Существующее между ними отношение получило название уравнения состояния. Для идеального газа используется уравнение Менделеева-Клапейрона. Данная связь запишется в виде:

p = p ( T , V ) или T = T ( p , V ) , V = V ( p , T ) .

При выборе независимых переменных в качестве V и T внутренняя энергия системы выражается в виде функции U = U ( T , V ) . Получим, что значение полного дифференциала от внутренней энергии примет вид:

d U = ∂ U ∂ T V d T + ∂ U ∂ V T d V ( 4 ) .

Произведем подстановку из ( 4 ) в ( 3 ) , тогда

c = ∂ U ∂ T V d T + ∂ U ∂ V T d V + p d V d T = ∂ U ∂ T V + p + ∂ U ∂ V T d V d T ( 5 ) .

Исходя из формулы ( 5 ) , теплоемкость находится в зависимости от процесса. Если он изохорный, то

Значение теплоемкости изохорного процесса запишется как:

C V = ∂ U ∂ T V ( 6 ) .

При изобарном теплоемкость выражается через формулу:

C p = ∂ U ∂ T V + p + ∂ U ∂ V T ∂ V ∂ T p = C V + p + ∂ U ∂ V T ∂ V ∂ T p ( 7 ) .

Перейдем к рассмотрению исследуемой системе идеального газа. Запись малого приращения энергии идеального газа:

d U = i 2 v R d T ( 8 ) .

d U d V T = 0 ( 9 ) .

Состояние идеального газа описывается при помощи уравнения Менделеева-Клапейрона:

∂ V ∂ T p = v R p ( 11 ) .

Произведем подстановку в ( 7 ) из ( 10 ) и ( 11 ) :

C p = C V + p + 0 v R p = C V + v R ( 12 ) .

Выражение ( 12 ) называют выведенным соотношением Майера.

Или для молярных теплоемкостей:

C μ p = C μ V + R ( 13 ) .

Найти удельную теплоемкость смеси 16 г кислорода и 10 г гелия в процессе с постоянным давлением.

Если Q считается количеством тепла, получаемым смесью газов в процессе, то

Q = c p m ∆ T ( 1 . 1 ) , где m является массой смеси, c p – удельной теплоемкостью смеси при неизменном давлении.

Q O 2 — это количество тепла, получаемое кислородом:

Q O 2 = c p O 2 m O 2 ∆ T ( 1 . 2 ) , m O 2 выражается массой кислорода, c p O 2 – теплоемкостью кислорода с постоянным давлением.

Для гелия аналогично:

Q H e = c p H e m H e ∆ T ( 1 . 3 ) .

Кроме этого рассмотрим:

Q = c p m ∆ T = Q O 2 + Q H e = c p O 2 m O 2 ∆ T + c p H e m H e ∆ T ( 1 . 4 ) .

Нахождение массы смеси производится по закону сохранения массы:

m = m O 2 + m H e ( 1 . 5 ) .

Произведем выражение теплоемкости c p из ( 1 . 4 ) , учитывая ( 1 . 5 ) . Тогда имеем:

c p = c p O 2 m O 2 + c p H e m H e m O 2 + m H e ( 1 . 6 ) .

Существует связь между молярной теплоемкостью и удельной:

c μ = c · μ → c = c μ μ ( 1 . 7 ) .

Если c μ V = i 2 R , то по уравнению Роберта Майера c μ p = c μ V + R :

c μ p = i + 2 2 R ( 1 . 8 ) ; i H e = 3 , i O 2 = 5 .

В данном случае удельные теплоемкости запишутся как:

c p H e = 5 2 R μ H e , c p O 2 = 7 R 2 μ O 2 ( 1 . 9 ) .

Результатом будет записанная формула удельной теплоемкости смеси:

c p = 7 R 2 μ O 2 m O 2 + 5 2 R μ H e m H e m O 2 + m H e ( 1 . 10 ) .

c p = 3 , 5 · 8 , 31 · 16 32 + 2 , 5 · 8 , 31 · 10 4 26 = 14 , 5 + 51 , 94 26 = 2 , 56 Д ж г К .

Ответ: удельная теплоемкость смеси равняется 2 , 56 Д ж г К .

При проведении опытов Джоулем было получено, что с μ p — c μ V = 1 , 986 к а л К · м о л ь . Значение газовой постоянной, измеренной в механических единицах R = 8 , 314 · 10 7 э р г К · м о л ь . Определите, как соотносятся 1 к а л , э р г , Д ж .

Основой решения данного задания принято считать уравнение Майера, формула записывается:

с μ p = c μ V + R → c μ p — c μ V = R ( 2 . 1 ) .

Отсюда получим, что:

c μ p — c μ V = 1 , 986 к а л К · м о л ь = 8 , 314 · 10 7 э р г К · м о л ь → 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж .

Ответ: 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж .

Изопроцессы уравнение майера уравнение пуассона

I закон термодинамики – это закон сохранения энергии, распространенный на тепловые явления.

Энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую

Термодинамическая система — совокупность макроскопических тел, которые могут взаимодействовать между собой и с другими телами (внешней средой) — обмениваться с ними энергией и веществом, отделенная от внешней среды реальной или воображаемой оболочкой.

Первый закон термодинамики

Количество теплоты Q, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами

Следствие: любая машина (любой двигатель) может совершать работу только за счет получения извне некоторого количества теплоты или уменьшения своей внутренней энергии.

Вечный двигатель первого рода (совершающий бОльшую работу, чем полученное количество теплоты) не возможен – таков вывод из первого закона термодинамики.

Невозможен вечный двигатель, совершающий работу, не получая энергии извне

Невозможен вечный двигатель, совершающий бОльшую работу, чем полученное количество теплоты

I закон термодинамики в применении к изопроцессам

Газ работы не совершает

При изохорном нагревании тепло поглощается телом
( Q >0) и его внутренняя энергия увеличивается.

При изохорном охлаждении тепло отдается внешним телам ( Q

Внутренняя энергия не изменяется

Количество теплоты, полученное газом при изотермическом расширении, превращается в работу над внешними телами. При изотермическом сжатии, работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

При изобарном расширении тепло поглощается газом
( Q >0) и газ совершает положительную работу.

При изобарном сжатии ( Q A

Процесс, протекающий в отсутствие теплообмена с окружающими телами

Газ совершает работу за счет убыли внутренней энергии:

при адиабатическом расширении газ совершает положительную работу, при этом его внутренняя энергия уменьшается. Это приводит к уменьшению его температуры. Вследствие этого давление убывает быстрее, чем при изотермическом расширении.

Адиабатный процесс — это процесс, при котором не происходит теплообмена с внешней средой. Физически это означает, что процесс протекает достаточно быстро и система не успевает обменяться теплотой с внешними телами.

Уравнение адиабатного процесса

Теплоёмкость тела — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Молярная теплоёмкость — это теплоёмкость одного моля вещества.

Удельная теплоемкость вещества — величина, равная количеству теплоты, необходи­мому для нагревания 1 кг вещества на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг·К)).

Теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CVмолярная теплоемкость в изохорном процессе (V = const)

и Cpмолярная теплоемкость в изобарном процессе (p = const).

Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагрева­нии газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа. Уравнение Майера:

Газовая постоянная R — это работа, совершаемая молем идеального газа при повышении его температуры на 1 К при постоянном давлении.

Показатель адиабаты (коэффициент Пуассона)


источники:

http://zaochnik.com/spravochnik/fizika/termodinamika/uravnenie-majera/

http://light-fizika.ru/index.php/10-klass?layout=edit&id=110