Изотерма адсорбции фрейндлиха характеризуется уравнением

Изотерма адсорбции фрейндлиха характеризуется уравнением

Адсорбция. Изотермы адсорбции Лэгмюра, Фрейндлиха. Уравнение БЭТ и его анализ.

Поверхностная энергия стремится самопроизвольно уменьшиться. Это выражается в уменьшении межфазной поверхности или поверхностного натяжения ( s ).

Вследствие этого стремления происходит адсорбция.

Адсорбция – процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемной фазой. То есть адсорбция может происходить в многокомпонентных системах, в слой переходит тот компонент, который сильнее уменьшает поверхностное натяжение. В общем случае адсорбция может быть результатом химического взаимодействия компонентов с поверхностью – хемосорбция.

Адсорбент – фаза, определяющая форму поверхности, она более плотная, может быть твердой или жидкой.

Адсорбат – вещество, которое перераспределяется (газ или жидкость).

Десорбция — переход вещества из поверхностного слоя в объемную фазу.

Для количественного описания адсорбции применяют две величины. Одна измеряется массой адсорбента, то есть числом молей или граммов, приходящихся на единицу площади поверхности или на единицу массы адсорбента. Эту величину обозначают «А» (метод «слоя конечной толщины»). Другая характеристика величины адсорбции определяется избытком вещества в поверхностном слое по сравнению с его количеством в таком же объеме фазы также отнесенным к единице площади или единице массы адсорбента.

Физико – химическая классификация.

1. физическая (молекулярная),

Наиболее широко распространена физическая адсорбция.

При физической адсорбции происходит взаимодействие адсорбата и адсорбента за счет сил Ван-дер-Ваальса и водородных связей. Силы Ван-дер-Ваальса включают три вида взаимодействия: диполь-дипольное, индукционное и дисперсионное. Для всех видов взаимодействия выполняется один закон изменения энергии притяжения от расстояния между атомами.

Адсорбция – изменение концентрации вещества на границе раздела фаз по сравнению с объемом. Этим термином обозначают также и процесс поглощения и количество поглощенного вещества Г, отнесенного к единице площади поверхности или массы адсорбента (ммоль/м 2 или ммоль/г).

Адсорбция идет с выделением энергии, следовательно, этот процесс самопроизвольный.

Адсорбент – вещество, на поверхности которого происходит адсорбция.

Адсорбат – адсорбирующееся вещество.

Адсорбция физическая – адсорбция, обусловленная силами межмолекулярного взаимодействия (как правило, обратима).

Хемосорбция – поглощение газов, паров или растворенных веществ твердыми или жидкими поглотителями, сопровождающееся образованием химических соединений.

Теплота адсорбции – отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции.

Адсорбция – экзотермический процесс ( Q >0) . При постоянной адсорбции(Г, Q = const ):

, .

Величина Q является косвенным критерием определения типа адсорбции: если Q Q >40 кДж/моль – хемосорбция.

Изотерма адсорбции – функциональная зависимость количества адсорбированного поверхностью вещества от давления или концентрации этого вещества в другой фазе Г= f ( p ) T = const , Г= f (с) T = const .При монослойной локализованной адсорбции на однородной поверхности Г= f ( p ) описывается изотермой Ленгмюра.

Уравнение изотермы абсорбции (1916 –1918 г) получено исходя из следующих предположений:

1.) поверность адсорбента энергетически однородна, т.е. адсорбция молекул на любом ее участке проходит с одинаковым тепловым эффектом

2.) отсутствует взаимодействие между адсорбированными молекулами, т.е. молекулы покрывают адсорбент только мономолекулярным слоем. Максимум адсорбции наблюдается тогда, тогда когда вся поверхность покрыта мномолекулярным слоем

3.) адсорбция обратима, т.е. между адсорбционным слоем и газовой (жидкой) фазой восстанавливается термодинамическое равновесие.

При равновесии скорость адсорбции V ад должна равняться скорости десорбции V дес .

Для того, чтобы молекула адсорбировалась, она должна удариться о поверхность и попасть на незанятое место. Так как число ударов пропорционально концентрации С, а вероятность попасть на незанятое место пропорциональна числу незанятых мест, то

где k 1 – константа скорости адсорбции. q — доля занятых мест, 1– q – доля не занятых мест.

Молекула десорбируется, когда ее энергия окажется достаточной для того, чтобы оторваться от поверхности. Число таких молекул пропорционально числу адсорбированных молекул, поэтому

где k 2 – константа десорбции.

отсюда , делим числитель и знаменатель на k 2 .

, уравнение Бернулли

Если число мест на адсорбенте равно z , то адсорбция Г= z q и уравнение изотермы будет

(1) уравнение Ленгмюра.

Исследуем это уравнение:

1.) адсорбция мала: либо мала k 1 , либо мала С, тогда bC zbC = , где — константа Генри, т.е. уравнение Ленгмюра переходит в уравнение Генри, следовательно изотерма адсорбции должна представлять собой сначала прямую линию (рис. 1).

2.) Адсорбция велика: bc >> 1, тогда Г= z , т.е. наступает предельная адсорбция Г ¥ . Отношение называется степенью заполнения поверхности. Уравнение Ленгмюра можно привести к линейному виду (рис. 2):

(2) или .

Отсекаемые на оси координат отрезки и наклоны этих прямых позволяют определить константы уравнения Ленгмюра z и b . Однако уравнении Ленгмюра неудовлетворительно истолковывает данные по адсорбции. Отклонение от теории Ленгмюра является результатом неоднородной поверхности, которая характеризуется наличием неодинаковых адсорбционных центров обладающих различным сродством с адсорбируемым веществом. Если поверхность энергетически неоднородна, используют эмпирическое уравнение Френдлиха

,

где х – количество адсорбированного вещества,

m – масса адсорбента,

С – равновесная концентрация после адсорбции,

k , n – константы (аппроксимационные параметры).

Константа k – представляет собой количество вещества, адсорбированное 1 г. адсорбента при С = 1моль/литр. Для каждого адсорбатива k имеет свое значение при одном и том же адсорбенте, т.е. она характеризует способность данного адсорбата адсорбироваться определенным адсорбентом

(4)

где n – наклон прямой, а k – антилогарифм отрезка прямой. Уравнение Фрейндлиха можно вывести предположив, что поверхность энергетически неоднородна и что адсорбция на каждом из типов адсорбционных центров подчиняется уравнению Ленгмюра. Тогда константа k отвечает константе адсорбционного равновесия, а n – степени агрегативности. Согласно уравнению Фрейндлиха количество адсорбируемого вещества неограниченно возрастает с увеличение концентрации и давления, поэтому это уравнение не является удовлетворительным для высоких заполнений поверхностей.

При многослойной адсорбции изотерма адсорбции описывается уравнением БЭТ (Брунаэр, Эммет, Теллер). Они предположили, что на поверхности адсорбента имеются однородные локализованные адсорбционные центры и что адсорбция на одном центре не оказывает никакого влияния на адсорбцию на соседних центрах, также как и в теории Ленгмюра. Далее они предположили, что молекулы могут адсорбирваться во втором, третьем и n -ом молекулярном слоях, причем доступная площадь для молекул n -го слоя равна площади покрытой ( n -1) слоем.

где ps – давление насыщенного пара адсорбата,

p – давление адсорбата в другой фазе.

Отличительной чертой адсорбции паров является переход к объемной конденсации при предельном давлении, равном давлению насыщенного пара жидкости, p = ps . Целью этого уравнения является нахождение Г ¥ с помощью которой можно рассчитать доступную поверхность адсорбента.

Изотерма адсорбции фрейндлиха характеризуется уравнением

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

Изотерма адсорбции Фрейндлиха в обычных (а) и логарифмических (б)
координатах

Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения, получаем:

Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lga, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации:

Уравнение изотермы адсорбции Фрейндлиха

Уравнение Фрейндлиха для адсорбции газа имеет вид:

(11)

K и 1/n –постоянные уравнения Фрейндлиха.

Чаще всего это уравнение применяется в логарифмической форме:

(12)

Уравнение в такой форме позволяет построить линейную зависимость lnA от lnp и графически определить оба постоянных параметра.

Логарифмическое уравнение Фрейндлиха для адсорбции из раствора имеет вид:

(13)

Графически определяем постоянные параметры по линейной зависимости lnA от lnC.(рис.2)

Отрезок, отсекаемый на оси ординат равен lg k, а тангенс угла наклона прямой

Рис.2. Изотерма адсорбции в координатах логарифмического уравнения.

Уравнение Никольского.

При ионообменной адсорбции происходит стехиометрический обратимый обмен ионов между объемом раствора электролитов и адсорбентом.

Процессы ионного обмена на твердой поверхности характеризуются уравнением Б.П.Никольского:

(14)

где и — количество ионов, поглощенных поверхностью сорбента (кмоль/кг), и — равновесные концентрации ионов в растворе (кмоль/ ), К – константа обмена, зависящая от способности ионов к адсорбции на данном сорбенте.

Графически уравнение Б.П.Никольского изображается прямой, тангенс угла наклона которой и представляют величину константы К.

Примеры решения задач:

1. Рассчитать удельную поверхность адсорбента по изотерме адсорбции бензола на его поверхности. Площадь, занимаемая молекулой бензола, S0=49·10 -20 м 2 .

p P/PS0.0240.080.140.200.270.350.46
a·10 3 , моль/кг14,934,847,256,866,379.3101.0

Решение. Проверяют применимость к экспериментальным данным теории БЭТ. С этой целью рассчитывают абсциссу и ординату уравнения изотермы адсорбции БЭТ в линейной форме, т.е.

и

Результаты вычислений сводят в таблицу 1 и строят график зависимости y=f(x)

p/psy, кг/мольp/psy, кг/моль
0,0241,6500,275,466
0,082,4990,356,790
0,143,4490,468,343

Рис.1 изотерма адсорбции в координатах линейной формы уравнения БЭТ.

Для определения адсорбционной емкости монослоя аm по графику зависимости у=f(x) находят константы уравнения прямой линии: отрезок, отсекаемый на оси ординат при p/ps=0, b0=1.24 кг/моль, и угловой коэффициент прямой b1=15.8 кг/моль. Для сравнения вычисляют b0 и b1

методом наименьших квадратов. Данные для расчёта b0 и b1 приведены в таблице 2.

nxy, кг/мольxy, кг/мольx 2
0,0241,6500,03965,76·10 -4
0,0802,4990,20006,4·10 -3
0,1403,4990,48301,96·10 -2
0,2004,4000,88004,00·10 -2
0,2705,4661,45507,08·10 -2
0,3506,7902,37650,123
0,4608,4343,87780,212

k=13,65 и am=0,0489 моль/кг.

По величине аm рассчитывают удельную поверхность адсорбента:

2. Вычислить предельный адсорбционный объём активированного угля БАУ по изотерме адсорбции бензола (таблица 3). Молярный объём бензола vm=89·10 -6 м 3 /моль.

p/psa, моль/кгp/psa, моль/кгp/psa, моль/кг
1,33·10 -60,501,63·10 -22,250,3272,86
2,13·10 -50,853,77·10 -22,390,4603,00
1,21·10 -41,189,47·10 -22,560,6573,19
5,60·10 -41,550,2012,740,8474,47

Решение. Проверяют применимость уравнения (II.15) к экспериментальным данным. С этой целью вычисляют lg a и (таблица 4) и строят график зависимости (Рис. II.2)

lg a lg a lg a
34,52-0,30103,190,35220,2300,4564
21,82-0,07062,030,37840,1130,4771
15,340,07191,050,40820,0330,5038
10,580,19030,480,43780,0050,6503

Рис.2 Изотерма адсорбции в координатах линейной формы уравнения М.М.Дубинина.

Как видно из рис.2, экспериментальные точки с хорошим приближением укладываются на прямую линию и, следовательно, уравнение (15) применимо к адсорбции бензола на активированном угле БАУ.

По отрезку, отсекаемому па оси lg a при =0, находят =0,435 и

3. По экспериментальным данным сорбции паров воды на активированном угле при Т = 293 К построить кривую капиллярной конденсации. Показать наличие гистерезиса и, используя ветвь десорбции, построить интегральную и дифференциальную кривые распределения пор по радиусам.

аадс ·10 3 ,моль/кг. 3,75 5,3 6;2 8,75 10,4 12, 5 13 ,4

адес·10 3 , моль/кг . . .. 3,75 7,0 7,9 10,0 11,5 13,0 13,4

Vm=18·10 -3 м3/моль, σ= 72,5-10 -3 Дж/м 2 .’

Решение. Строят изотерму капиллярной конденсации в соответствии с условием задачи. Выбирают ряд точек на ветви десорбции (не менее шести—восьми), соответствующих определенным значениям p/pS, и рассчиты­вают объем пор, заполненных конденсатом, по уравнению V=aVm. Затем для этих же значений по уравнению

рассчитывают максимальный радиус пор, заполненных конденсатом при соответствующих давлениях p/ps. Полученные данные записывают в табл. 5 и строят структурную кривую адсорбента в координатах V=f(r). Из кривой находят ряд значений ΔV/Δr (табл.6) и строят дифференциальную кривую распределения объёма пор по радиусам в координатах ΔV/Δr=f(r)

Таблица.5 Данные для построения интегральной кривой распределения объёма пор по радиусам.

№ точкиP/PSaдес·10 3 ,моль/кгV·10 6 ,м 3 /кгr·10 10 ,м
0,05 0,1 0,2 0,4 0,6 0,8 0,9 0,980,5 3,7 7,0 7,9 9,0 10,0 10,9 11,50,9 66,6 126,0 142,0 162,0 180,0 196,0 207,02,2 4,6 6,6 8,5 11,6 15,5 20,2 26,3

Таблица.6 Данные для построения дифференциальной кривой распределения объёма по радиусам.

ΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,м
1,5 0,5

Рис.3 Интегральная(1) и дифференциальная(2) кривые распределения.

Задачи

1. Ниже приведены экспериментальные данные по адсорбции азота на TiO2 (рутиле) при 75 К:

P·10 2 Па……….60,94 116,41 169,84 218,65 275,25

А, моль/кг……. 0,367 0,417 0,467 0,512 0,567

Постройте график соответствующий линейному уравнению БЭТ. Найдите константы и k. Рассчитайте удельную поверхность адсорбента. Давление насыщенного пара азота при указанной температуре Рs=78300 Па, площадь,

занимаемая одной молекулой азота S0=0,16 нм 2 .

2.Окись углерода адсорбируется на слюде; данные при 90 К представлены ниже. Определите, какой изотерме – Лэнгмюра или Фрейндлиха – лучше соответствуют эти данные? Каково значение К для адсорбционного равновесия? Взяв общую поверхность равной 6200см 2 , рассчитайте площадь, занимаемую каждой адсорбированной молекулой.

Vа, см 3 ……………..0,130 0,150 0,162 0,166 0,175 0,180

Р, мм. рт. cт.………. 100 200 300 400 500 600.

3.При измерении адсорбции газообразного азота на активном угле при 194.4К были получены следующие данные:

р·10 -3 , Па……………….1,86 6,12 17,96 33,65 68,89

А·10 3 , м 3 /кг…………..…5,06 14,27 23,61 32,56 40,83

Значения А даны для азота при нормальных условиях.

Рассчитайте, постоянные в уравнение Лэнгмюра и удельную поверхность активированного угля, принимая плотность газообразного азота равной

1,25 кг/м 3 , а площадь занимаемую одной молекулой азота на поверхности адсорбента, равной 0,16 нм 2 .

4.При измерении адсорбции азота на активированном угле при 273 К были получены следующие данные:

А,см 3 /г…………..……0,987 3,04 5,08 7,04 10,31

Р, мм. рт. ст…….……3,93 12,98 22,94 34,01 56,23

Построить график в координатах, в которых происходит спрямление уравнения изотермы Лэнгмюра, и определить константы этого уравнения.

5.Определите константы эмпирического уравнения Фрейндлиха, используя следующие данные об адсорбции диоксида углерода на активном угле при 293 К:

Р·10 -3 , Па…………1,00 4,48 10,0 14,4 25,0 45,2

А·10 2 , кг/кг……….3,23 6,67 9,62 11,72 14,5 17,7.

6.Используя уравнение БЭТ, построить изотерму адсорбции бензола по нижеуказанным данным и рассчитайте удельную поверхность адсорбента по изотерме адсорбции бензола (варианты 1-4):

1. P/Ps.………..0,04 0,08 0,16 0,22 0,27 0,36 0,46

А, моль/кг……. 0,348 0,483 0,624 0,724 0,805 0,928 0,13

2. Р/Рs………. 0,05 0,12 0,19 0,26 0,34 0,44 0,50

А, моль/кг ……. 0,31 0,593 0,795 0,99 1,21 1,525 1,77

3. Р/Рs……….…0,03 0,07 0,12 0,17 0,24 0,31 0,38

А, моль/кг……. 0,196 0,301 0,373 0,423 0,488 0,52 0,625

4. Р/Рs…………. 0,02 0,05 0,11 0,19 0,25 0,3 0,36

А, моль/кг……. 0,104 0,196 0,298 0,387 0,443 0,488 0,55

Площадь, занимаемую молекулой бензола, примите равной 0,49 нм 2 .

7.Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по данным об адсорбции азота:

А•10 3 , м 3 /кг…………..0,71 0,31 0,93 1,09

Площадь занимаемая молекулой азота в плотном монослое, равна 0,16 нм 2 ,

Плотность азота 1,25 кг/м 3 .

8.При обработке данных по адсорбции азота на графитированной саже при 77 К с помощью графика, соответствующего линейному уравнению БЭТ,

найдено, что тангенс угла наклона прямой составляет 1,5•10 3 , а отрезок, отсекаемый на оси ординат, равен 5 единицам (адсорбция выражена в м 3 азота на 1 кг адсорбента при нормальных условиях). Рассчитайте удельную поверхность адсорбента, предполагая, что площадь, занимаемая одной молекулой азота, равна 0,16 нм 2 .

9.Ниже приведены результаты измерения адсорбции газообразного криптона (при 77,5К) на катализаторе:

А·10 3 , м 3 /кг…………1,27 1,5 1,76 1,9 1,98

Р, Па……………..…13,22 23,99 49,13 75,70 91,22.

Значения А для криптона даны при нормальных условиях. Определите константы уравнения БЭТ и удельную поверхность катализатора, принимая, что один атом криптона занимает площадь 0,195нм 2 , Рs=342,6 Па, плотность криптона равна 3,74 кг/м 3

10.используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по изотерме адсорбции азота:

А, моль/кг……..2,16 2,39 2,86 3,02 3,22 3,33

Площадь занимаемая одной молекулой азота в адсорбционном слое 0,16 нм 2 .

11.По изотерме адсорбции азота определить удельную поверхность адсорбента

(Т=77 К, S0=16,2·10 -20 м 2 ). (Варианты 1-5).

1. Р/Рs………. 0,04 0,09 0,16 0,20 0,30

А, моль/кг… .2,20 2,62 2,94 3,11 3,58

2. Р/Рs…………0,029 0,05 0,11 0,14 0,20

А, моль/кг………..2,16 2,39 2,86 3,02 3,33

3. Р/Рs………….0,02 0,04 0,08 0,14 0,16 0,18

А, моль/кг………..1,86 2,31 2,72 3,07 3,12 3,23

Для следующих двух вариантов объем адсорбированного газа приведен к нормальным условиям:

4. Р/Рs…………….…0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 м 3 /кг……………..0,70 1,10 1,17 1,32 1,45 1,55

5. Р/Рs……………….0,029 0,05 0,11 0,14 0,18 0,20

А·10 2 м 3 /кг……..……..0,48 0,54 0,64 0,68 0,72 0,75

12.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49•10 -20 м 2 . Объем адсорбированного газа приведен к нормальным условиям (варианты 1-4):

1. Р/Рs…………………….0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 , м 3 /кг………………..0,86 1,20 1,40 1,60 1,80 1,90

2. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг……….………..1,15 1,37 1,55 1,71 1,86 1,99

3. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг………………..0,89 1,09 1,27 1,45 1,60 1,78

4. Р/Рs…………………….0,08 0,16 0,25 0,35 0,45 0,52

А·10 2 , м 3 /кг………..… ……1,03 1,37 1,70 1,99 2,44 2,82

13.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49·10 -20 м 2 (варианты 1-3).

1. Р/Рs……………..0,05 0,10 0,15 0,20 0,30 0,40

А, моль/кг…. ………0,36 0,51 0,60 0,68 0,82 0,98

2. Р/Рs…………. ….0,06 0,12 0,20 0,30 0,40 0,50

А, моль/кг…. ………..0,08 0,16 0,25 0,35 0,45 0,52

3. Р/Рs…………. ….0,46 0,61 0,76 0,89 1,09 1,26

14.Построить изотерму адсорбции нитролигнина на глине и определить константы уравнения Фрейндлиха по следующим экспериментальным данным:

Концентрация водного раствора нитролигнина

Г·10 3 , кг/кг……………………5,0 12,0 21,0 26,0 35,0 38,0.

15.Пользуясь экспериментальными данными ионного обмена ионов кальция (Г1с1) и натрия (Г2с2) на синтетическом катионите, определить графически константу уравнения Никольского К:

в растворе…………….0,2 0,3 0,4 0,5 0,6 0,8

на сорбенте…………..0,75 1,0 1,5 1,8 2,4 3,1.

16.Пользуясь константами уравнения Фрейндлиха k=4,17·10 -3 , 1/n=0,4, рассчитать и построить изотерму адсорбции углекислого газа на угле для следующих интервалов давления: 100·10 2 , 200·10 2 , 400·10 2 , 500·10 2 Н/м 2 .

17. Пользуясь константами уравнения Фрейндлиха k=3,2·10 -3 , 1/n=0,6 построить кривую адсорбции углекислого газа на угле в интервале давлений от 5·10 2 до 25·10 2 Н/м 2 .

18. По данным сорбции углекислого газа на угле построить изотерму адсорбции и определить константы изотермы адсорбции Фрейндлиха:

Р·10 -2 , Н/м 2 ……………..5,0 10,0 30,0 50,0 75,0 100,0

Г·10 3 , кг/кг……………..30, 5,5 16,0 23,0 31,0 35,0.

19. При изучении реакций обмена Mg-ионов из чернозема с ионами Ca из внесенных минеральных удобрений получены следующие результаты:

Концентрация ионов в растворе Количество сорбированных катионов

С·10 3 , кмоль/м 3 Г·10 5 ,кмоль/кг

2,41 4,75 8,12 42,88

2,25 5,00 7,70 43,30

2,00 5,10 6,90 44,10

1,84 5,50 6,10 44,90

1,53 5,87 4,54 46,46

1,37 5,99 4,12 46,88

Графическим методом определить константу уравнения Никольского.

20.Оределить константу уравнения Никольского К, используя экспериментальные данные реакций обмена ионов Ca из почвы на ионы Na из раствора натриевой соли.

Концентрация ионов в растворе Na…3,26 6,60 13,80 21,25 38,41 65,19

С·10 3 , кмоль/м 3 Ca.…37,84 36,72 34,62 31,87 26,16 17,10

Количество сорбированных Na….0,28 0,60 1,20 1,89 3,18 7,62

ионов Г·10 5 , кмоль/кг Ca…39,72 39,56 39,40 38,93 38,68 37,40

21.Пользуясь экспериментальными данными реакций обмена ионов ионов Na из раствора натриевой соли на ионы Mg из почвы, определить графически константу уравнения Никольского:

Концентрация ионов в растворе Количество сорбированных ионов

С·10 3 ,кмоль/м 3 на почве Г.10 5 , кмоль/кг

13,82 41,92 1,16 25,40

21,25 38,30 1,89 26,13

38,19 31,90 3,62 27,20

65,0 21,14 8,01 29,32

79,25 14,73 11,66 32,84

22. Используя экспериментальные данные адсорбции анилина из его водного раствора на угле, определить графически константы уравнения Лэнгмюра и построить изотерму адсорбции для следующих с1:

C1·10 4 , кмоль/м 3 ……………………3 5 10 15 20

анилина с·10 4 , кмоль/ м …………1,0 4,0 7,5 12,5 17,5

А·10 9 ,кмоль/м 2 …………….……0,3 0,58 0,70 0,87 0,92

23.По экспериментальным данным построить кривую адсорбции углекислого газа на цеолите при 293º и с помощью графического метода определить константы уравнения Лэнгмюра:

Р·10 -2 , н/м 2 ……………….1,0 5,0 10,0 30,0 75,0 100,0 200,0

А·10 3 , кг/кг………………35,0 86,0 112,0 152,0 174,0 178,0 188,0

24.Используя уравнение Лэнгмюра, вычислить величину адсорбции азота на цеолите при давлении р=2,8·10 2 , если А=38,9·10 -3 кг/кг, а k=0,156·10 -2 .

25. Найти площадь, приходящуюся на одну молекулу в насыщенном адсорбционном слое анилина на поверхности его водного раствора, если предельная адсорбция А=6,0·10 -9 кмоль/м

26.По экспериментальны данным адсорбции углекислого газа на активированном угле, найти константы уравнения Лэнгмюра, пользуясь которыми рассчитать и построить изотерму адсорбции:

P·10 -2 , Н/м2……………..9,9 49,7 99,8 200,0 297,0 398,5

Г·10 3 , кг/кг……………..32,0 70,0 91,0 102,0 107,3 108,0.

27.По константам уравнения Лэнгмюра А=182·10 -3 и k=0,1·10 -2 рассчитать и построить изотерму адсорбции углекислого газа на активированном угле в пределах следующих равновесных давлений газа: 10·10 2 – 400·10 2 Н/м.

28.Построить кривую адсорбции углекислого газа на активированном угле при 231 º и определить константы эмпирического уравнения Фрейндлиха, пользуясь следующими экспериментальными данными:

Р·10 -2 , Н/м 2 ………………10,0 44,8 100,0 144,0 250,0 452,0

А·10 3 , кг/кг……………….32,3 66,7 96,2 117,2 145,0 177,0.

29. Используя константы эмпирического уравнения Фрейндлиха k=1,6·10 -3 и 1/n=0,48, построить кривую адсорбции углекислого газа на активированном угле при 271 º в интервале давлений от 2·10 2 до 30·10 2 Н/м 2 .

30. Определить постоянные эмпирического уравнения Фрейндлиха, используя следующие данные для адсорбции при 231К углекислого газа на угле из коксовой скорлупы:

Р, Па·10 -3 ……………….1,000 4,480 10,000 14,40 25,0 45,2

А, кг/кг·10 2 ………………3,23 6,67 9,62 11,72 14,5 17,7.

31. Вычислите площадь поверхности катализатора, если для образования монослоя на нем должно адсорбироваться 103 см 3 /г азота (объем приведен к 760 мм рт.ст. и 0ºС). Адсорбция измеряется при температуре 195ºС. Эффективная площадь, занимаемая молекулой азота при этой температуре, равна 16,2 А 2 .

32.Площадь поверхности 1 г активированного угля равна 1000 м 2 . Какое количество аммиака может адсорбироваться на поверхности 45 г угля при 45ºС и 1 атм, если принять в качестве предельного случая полное покрытие поверхности? Диаметр молекулы аммиака равен 3·10 -10 м. Принимается, что молекулы касаются друг друга так, что центры четырех соседних сфер расположены в углах квадрата.

33. Ниже представлены данные по хемосорбции водорода на порошке меди при 25ºС. Подтвердите, что они подчиняются изотерме Ленгмюра. Затем найдите значение К для адсорбционного равновесия и адсорбционный объем, соответствующий полному покрытию.

Р, мм рт ст…………………..0,19 0,97 1,90 4,05 7,5 11,95

Vа, см 3 ……………………….0,042 0,163 0,221 0,321 0,411 0,471.

34. Определите, какая изотерма – Лэнгмюра или Фрейндлиха – лучше соответствует данным для адсорбции метана на 10 г сажи при 0ºС, приведенным ниже:


источники:

http://www.sites.google.com/site/kolloidnaahimia/adsorbcia-svistat-vseh-na-poverhnost/izoterma-adsorbcii-frejndliha

http://poisk-ru.ru/s21458t23.html