Изотерма адсорбции уравнения ее описывающие

Уравнение изотермы адсорбции Ленгмюра

Конечно, предположение, что молекулы адсорбируются с одинаковой вероятностью на любых участках поверхности, в том числе и уже занятых ранее — слишком грубое допущение, пригодное лишь для очень малых степеней покрытия.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

1) Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента — образуется мономолекулярный слой.

2) Адсорбционные центры энергетически эквивалентны — поверхность адсорбента эквипотенциальна.

3) Адсорбированные молекулы не взаимодействуют друг с другом.

Простейший вывод уравнения Ленгмюра, данный Кисилевым, основан на рассмотрении химического (в случае хемосорбции) или квазихимического (в случае физической адсорбиии) равновесия молекула газа + свободное место↔адсорбированная молекула.

Для обычного выражения константы равновесия через концентрации участников рассматриваемого процесса необходимо условиться о способах их выражения. Концентрация адсорбированных молекул может быть выражена не только числом адсорбированных молекул на 1 м 2 поверхности, но и в относительных единицах через долю занятой поверхности (степень заполнения поверхности) θ. Тогда, в тех же единицах, концентрация свободных мест 1-θ. Концентрация молекул газа (а молях на миллилитр) может быть заменена пропорциональной ей величиной давления Р (равновесное давление адсорбата в объеме фазы, граничащей с адсорбентом). Такая свобода в выборе единиц рассматриваемых концентраций обусловлена тем, что соответствующие константы пропорциональности могут быть объединены с константой равновесия. Итак, константа равновесия

. (2.6)

Решение этого уравнения относительно θ приводит к выражению

. (2.7)

Если а, как и раньше, есть величина адсорбции (моль/см 2 или см 3 /г), а am — величина адсорбции, соответствующая полному заполнению поверхности (емкость монослоя, моль/см 2 ), то степень заполнения θ=a/am, (2.8)

т.е. , (2.9)

отсюда (2.10)

В такой форме уравнение Ленгмюра широко известно. Оно содержит две константы: am, кратко называемая емкостью монослоя, и K — константа, зависящая от энергии адсорбции и температуры.

Итак, уравнение Ленгмюра – это уравнение монослойной адсорбции на однородной поверхности в отсутствие сил притяжения между молекулами адсорбата.

Посмотрим, какую форму примет уравнение при крайних значениях поверхностной концентрации адсорбированного вещества.

В области малых концентраций, т.е. при малых давлениях, КР >1, и единицей в знаменателе можно пренебречь:

т.е. величина адсорбции стремится к пределу, при котором она уже практически не зависит от давления (участок 3 изотермы адсорбции). В промежуточной области (участок 2) зависимость адсорбции от давления описывается самим уравнением (2.10).

Рис. 2.5. Три участка изотермы адсорбции Ленгмюра

Таким образом, по модели Ленгмюра, вначале адсорбция растет пропорционально давлению газа, затем, по мере заполнения мест на поверхности, этот рост замедляется и, наконец, при достаточно высоких давлениях рост адсорбции практически прекращается, так как покрытие поверхности становится весьма близким к монослойному. Необходимо подчеркнуть, однако, что по этой модели завершение образования монослоя происходит лишь при бесконечно высоком давлении. Форма изотермы адсорбции, предсказываемая уравнением Ленгмюра, экспериментально наблюдается в случае химической адсорбции на однородных поверхностях. Для физической адсорбции такое соответствие наблюдается только в начальной области изотермы. При больших заполнениях не получается предсказываемого теорией приближения к насыщению и изотерма продолжает подъем с ростом давления, причем она становится даже более крутой.

Для удобной проверки приложимости уравнения Ленгмюра к экспериментальным данным преобразуем его в линейную форму. Разделим обе части уравнения (2.10) на Р:

. (2.13)

Перевернем дроби по обе части равенства:

. (2.14)

Если по оси абсцисс откладывать Р, а на оси ординат Р/а, то в случае выполнимости уравнения Ленгмюра экспериментальные точки должны укладываться на прямую. Начальной ординатой будет 1/(аm∙К), тангенсом угла наклона прямой 1/аm. Из того и другого выражения легко вычислить обе константы am и К. Пример такого построения показан на рис. 2.6, где экспериментальные точки для адсорбции бензола на графитированной саже, в соответствии с указанными ранее, легли па прямую только в области малых давлений (до Р/Р0 =0.1).

Рис. 2.6. Изотерма адсорбции бензола при 20 о С на графитированной саже в координатах линейной формы уравнения Ленгмюра

Имеется немало примеров, когда уравнение Ленгмюра не выполняется. Объясняется это тем, что не оправдываются оба допущения теории об однородности поверхности и отсутствии взаимодействия молекул, особенно первое из них. Тот факт, что имеются случаи адсорбции на реальных неоднородных поверхностях, когда уравнение Ленгмюра все же удовлетворительно описывает экспериментальные данные, Брунауер объясняет тем, что в некотором интервале адсорбция происходит не на всей поверхности адсорбента, а только на части ее, именно на местах с примерно одинаковой теплотой адсорбции. Тогда в этом интервале уравнение Ленгмюра будет справедливо. После того, как эти места заполнены, начинает заполняться следующая серия мест с меньшей теплотой адсорбции. Поэтому для совокупности всех мест поверхности уравнение Ленгмюра может быть непригодно, а для части этих мест — справедливо. Отсюда, выполнимость его для разных адсорбентов зависит от соотношения участков с разной теплотой адсорбции.

Константы уравнения (2.10) K и am могут быть определены графическим способом (рис. 2.7). Для этого уравнение Ленгмюра приводят к следующему линейному виду, разделив единицу на уравнение (2.10):

(2.15)

Рис. 2.7. Линейная форма уравнения изотермы Ленгмюра (a=am)

Зная емкость монослоя, можно определить удельную поверхность адсорбента Sуд (м 2 /г или см 2 /г) если известна площадь ω, занимаемая частицей в плотном адсорбционном слое (площадь, занимаемая одной молекулой азота в адсорбционном слое ω = 0.162 нм 2 ):

, (16)

где аmемкость монослоя — это количество адсорбата, которое может разместиться в полностью заполненном адсорбционном слое толщиной в 1 молекулу — монослое – на поверхности единицы массы (1г) твердого тела; ω — средняя площадь, занимаемая молекулой адсорбата в заполненном монослое, NA — число Авогадро (6,022·10 23 молекул/моль); VM — молярный объем адсорбата (газа) (VM = 22,41 л/моль=22,41∙10 -3 м 3 /моль).

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической.

Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию В этом случае используют уравнение БЭТ (Брунауер –Эммет — Теллер).

Пример 2.1. При адсорбции азота на активированном угле при 220К получены следующие данные:

Р, Па 5310 9800 18000 33000 70000

a, cм 3 /г 7 14 23 32 51

Плотность газообразного азота ρ=1,2506 кг/м 3 . Площадь, занимаемая одной молекулой азота в насыщенном монослое, составляет ω = 0.162 нм 2 . VM — молярный объем адсорбата (газа) (VM = 22,41 л/моль=22,41∙10 -3 м 3 /моль).

Постройте изотерму адсорбции в линейных координатах. Графически определите константы аm и К уравнения Ленгмюра, пользуясь которыми, постройте изотерму Ленгмюра. Определите удельную поверхность активированного угля Sуд.

Решение. Линейная форма уравнения Ленгмюра выражается (2.15):

.

Определим 1/аm и 1/ р:

(1/р)·10 -3 , Па 0,1883 0,1020 0,0556 0,0303 0,0143

1/а·, см 3 /г 0,143 0,071 0,043 0,031 0,020

Строим график зависимости 1/а=f(1/р)∙10 -3 (рис.2.8). По графику находим 1/аm как отрезок, отсекаемый прямой на оси ординат, для чего необходимо продлить полученную прямую до пересечения с осью ординат.

Рис.2.8. Линейная форма уравнения Ленгмюра для адсорбции азота на активированном угле

Уравнение прямой y=a+bx, имеет следующее формульное выражение:

Это выражение может быть определено с помощью регрессионного анализа в Microsoft Excel (встроенного пакета Анализ данных — Регрессия по значениям 1/аm и 1/ р).

Из уравнения получим 1/am=0,00698 г/см 3 .

Откуда получим: am=143,35 см 3 /г.

Далее находят тангенс угла наклона прямой к оси абсцисс tgα=1/(am∙K) по графику (или по уравнению регрессии). tgα=0,70099. Тогда, зная значения am и tgα, можно определить K=9,95 кг/м 3 .

Теперь, зная константы аm и К уравнения Ленгмюра, построим изотерму Ленгмюра, для чего рассчитаем по формуле (2.10) значения а для различных значений Р и получим:

Р, Па 5310 9800 18000 33000 70000

a, cм 3 /г 140,69 141,90 142,56 142,92 143,15

По данным значениям построим изотерму Ленгмюра а=f(P), представлена на рис.2.9.

Рис. 2.9. Изотерма Ленгмюра а=f(P)

По формуле (2.16) рассчитаем удельную поверхность активированного угля: и получим Sуд=624,05 м 2 /г.

В случае, когда известна плотность вещества (адсорбента) ρ и молярная масса M, а не известен VM — молярный объем адсорбата удельную поверхность вещества (активированного угля) находят по формуле:

где am выражают в моль/кг.

Для азота М= 0,0280 кг/моль, ρ=1,2506 кг/м 3 .

Из расчетов видно, что два способа расчета Sуд дают почти одинаковые результаты.

Пример 2.2. Удельная поверхность непористой сажи равна 73,7м 2 /кг. Рассчитайте площадь, занимаемую молекулой бензола в плотном монослое, исходя из данных об адсорбции бензола на этом адсорбенте при 293 К.

Р, Па 1,03 1,29 1,74 2,50 6,67

а∙10 2 , моль/кг 1,57 1,94 2,55 3,51 7,58

Предполагается, что изотерма адсорбции описывается уравнением Ленгмюра.

Решение. Используем линейную форму записи уравнения Ленгмюра, заданную формулой (2.14):

Рассчитываем значения Р/а:

(Р/а)∙10 -2 , Па∙кг/моль 0,656 0,668 0,68 0,712 0,879

Р, Па 1,03 1,29 1,74 2,50 6,67

По этим данным строим график в координатах уравнения Ленгмюра в линейной форме P/a=f(P).

Из графика находим аm= Р/(Р/а) = 25,2∙10 -2 моль/кг.

Удельная поверхность адсорбента связана с емкостью слоя аm, выраженного в моль/кг, соотношением: Sуд=am∙ω∙NA (2.18)

Площадь, занимаемая молекулой бензола в плотном монослое, равна

ω = Sуд/(am NA) ==73,7 10 3 /(6,02 10 23 ∙25,210 -2 )=0,49∙10 -18 м 2 =0,49 нм 2 .

Изотермы адсорбции: понятие, виды, примеры

Изотермы адсорбции: понятие, виды, примеры — Наука

Содержание:

В изотермы адсорбции Они представляют собой графические изображения поведения адсорбированной частицы на поверхности твердого тела или жидкости при увеличении ее концентрации. Если адсорбированные частицы соответствуют частицам газа, то учитывается его давление.

Наблюдая эту изотерму, можно получить представление о том, как происходит процесс адсорбции; и, следовательно, о том, как взаимодействуют частицы с поверхностью, и о характеристиках поверхности. Анализируя изотерму, выясняется, является ли поверхность гладкой, пористой или микропористой, а также возможны конденсации.

Изображение выше помогает прояснить вышесказанное. Адсорбированные частицы (фиолетовые кружки) называются адсорбатами. В то время как адсорбент — это тот, у которого есть поверхность, на которой адсорбаты будут адсорбироваться. Чем выше его давление или концентрация, тем больше объем адсорбируется на адсорбенте.

Это простое представление соответствует адсорбции, описываемой изотермой типа I. С помощью изотерм изучается адсорбция бесконечного количества газов или жидкостей на гелях, твердых телах или катализаторах.

Типы изотерм адсорбции

Выше показаны пять основных экспериментальных изотерм, использованных С. Брунауэром для классификации адсорбции газообразных частиц на твердых телах. Каждый описывает свой процесс адсорбции. Аналогичным образом, у каждого из них есть математические модели, которые пытаются вывести поведение его кривых.

Независимо от единиц или переменных, используемых в осях X (p / po) и Y (X), ось X показывает, какое давление или концентрация адсорбата «действует» на твердое тело; тогда как ось Y показывает, сколько адсорбата было фактически адсорбировано на поверхности указанного твердого вещества или адсорбента.

Таким образом, перемещаясь вправо от оси X, мы видим, как количество адсорбированных частиц увеличивается в зависимости от увеличения их давления или концентрации. Это приводит к наблюдению максимума, распада, впадины и т. Д., Что так или иначе позволяет нам интерпретировать, как происходит адсорбция.

Изотерма I типа

Выше у нас есть изотерма типа I, которая также известна как изотерма Ленгмюра, поскольку ваша модель предсказывала форму этой кривой. При просмотре сразу же интерпретируется, что существует максимальное количество (Xmax) адсорбированных частиц, которое не будет изменяться независимо от того, насколько увеличиваются давления.

Это максимальное значение адсорбции может быть вызвано несколькими причинами. Один из них заключается в том, что происходит хемосорбция, что означает, что частицы или адсорбаты прочно прикреплены к поверхности твердого вещества или адсорбента. Как только на поверхности не останется места для размещения большего количества частиц, адсорбция прекратится.

Поэтому говорят, что образовался монослой (как тот, что отмечен фиолетовыми кружками на первом изображении).

Другая причина для обоснования изотермы типа I заключается в том, что происходит физическая адсорбция, что означает, что взаимодействия частицы с поверхностью очень слабые (они не подразумевают образование химических связей).

В этом случае частицы попадают в микропоры, которые после заполнения поверхности не имеют дополнительных участков для последующей адсорбции; то есть у него мало доступной внешней площади (как если бы это была очень тонкая решетка). Такое поведение наблюдается при анализе микропористых порошков.

Тип изотермыII

Выше представлена ​​изотерма типа II, также известная как сигмовидная изотерма. Он описывает процессы физадсорбции как для непористых, так и для макропористых твердых тел.

Обратите внимание, что он изначально напоминает приведенную выше изотерму, что означает, что адсорбированные частицы образуют монослой на поверхности адсорбента. Как только монослой будет готов, другие частицы будут адсорбироваться поверх первых, образуя мультислои. Именно здесь мы видим характерное увеличение этой изотермы (справа).

Другая причина получения изотермы типа II заключается в том, что частицы имеют большее сродство к поверхности, чем к самим себе. Другими словами, монослой (частица-поверхность) будет более стабильным и долговечным, чем многослойный (частица-частица), сформированный позже.

Тип изотермыIII

Изотерма III типа аналогична типу II по интерпретации: многослойность и физисорбция. Однако на этот раз взаимодействия между мультислоями сильнее, чем взаимодействия монослоя с поверхностью твердого тела. Следовательно, это нерегулярная адсорбция с множеством адсорбированных частиц и частей со свободной поверхностью.

Тип изотермыIV

Изотерма IV типа также описывает физадсорбцию и многослойные процессы, напоминая изотерму типа II; но теперь в пористых (и мезопористых) твердых телах, где возможна конденсация газовых частиц в небольших объемах жидкости. Пока поры не «забиты» жидкостью, монослой не является полным.

Тип изотермыV

Изотерма типа V аналогична изотерме типа IV, только на этот раз многослойные образования более склонны, чем соответствующий монослой. То есть она напоминает адсорбцию, описываемую изотермой III типа. Здесь многослойный слой достигает максимальной толщины, и больше нет места для адсорбции большего количества частиц.

Примеры

Некоторые примеры систем газ-твердое тело будут упомянуты ниже вместе с типом изотерм, которые были получены в ходе их экспериментальных исследований:

-Аммиак-углерод (тип I)

-Азотные цеолиты (тип I)

-Водород-углерод при высоких температурах (тип I)

-Кислородно-углеродная сажа (тип I)

-Азот-силикагель (тип II)

-Азотно-железо (тип II)

-Бромсиликагель (тип III)

-Пары йода-силикагель (тип III)

-Зот-полиэтилен (тип III)

-Криптон-технический углерод (тип IV)

-Бензол-оксид железа гель (тип IV)

-Водоуглеродный пар (тип V)

Обратите внимание, что упомянутые твердые вещества представляли собой углерод, технический углерод, металлическое железо, оксид железа, цеолиты и силикагель. Все они являются хорошими примерами адсорбентов для различных промышленных применений.

Ссылки

  1. Уолтер Дж. Мур. (1963). Физическая химия. В термодинамике и химическом равновесии. (Четвертое изд.). Лонгманс.
  2. Ира Н. Левин. (2009). Основы физико-химии. Издание шестое, стр. 479-540. Мак Гроу Хилл.
  3. Glasstone. (1970). Учебник физической химии. Второе издание. Д. Ван Ностранд, Company, Inc.
  4. Блок 3. Поверхностные явления. (н.д.). Адсорбция. [PDF]. Получено с: depa.fquim.unam.mx
  5. Лоуэлл С., Шилдс Дж. Э. (1984) Изотермы адсорбции. В: Площадь поверхности порошка и пористость. Спрингер, Дордрехт.
  6. Elsevier B.V. (2020). Изотерма адсорбции. ScienceDirect. Получено с: sciencedirect.com
  7. Википедия. (2020). Адсорбция. Получено с: en.wikipedia.org

Ganoderma lucidum: характеристики, среда обитания и польза

Изотерма адсорбции уравнения ее описывающие

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

4.1 ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ И АДСОРБЦИЯ

4.1.3 Адсорбция на границе твердое тело – газ

При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата и адсорбента представляет собой весьма сложную задачу, поскольку характер их взаимодействия, определяющий характер адсорбции, может быть различным. Поэтому обычно задачу упрощают, рассматривая два крайних случая, когда адсорбция вызывается физическими или химическими силами – соответственно физическую и химическую адсорбцию.

Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 – 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.

Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40 – 120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.

Следует подчеркнуть, что явления физической и химической адсорбции чётко различаются в очень редких случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо и лишь небольшая часть – прочно. Например, кислород на металлах или водород на никеле при низких температурах адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать химическая адсорбция. При повышении температуры увеличение химической адсорбции с некоторой температуры начинает перекрывать падение физической адсорбции, поэтому температурная зависимость адсорбции в этом случае имеет четко выраженный минимум (рис. 4.4).

Рис. 4.4 Зависимость объема адсорбированного никелем водорода от температуры

При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.

4.1.4 Теории адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело – газ или твердое тело – раствор.

Теория мономолекулярной адсорбции Ленгмюра

Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр, основывается на следующих положениях.

1) Адсорбция является локализованной и вызывается силами, близкими к химическим.

2) Адсорбция происходит не на всей поверхности адсорбента, а на активных центрах , которыми являются выступы либо впадины на поверхности адсорбента, характеризующиеся наличием т.н. свободных валентностей. Активные центры считаются независимыми (т.е. один активный центр не влияет на адсорбционную способность других), и тождественными.

3) Каждый активный центр способен взаимодействовать только с одной молекулой адсорбата ; в результате на поверхности может образоваться только один слой адсорбированных молекул.

4) Процесс адсорбции является обратимым и равновесным – адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; т.о., через некоторое время между процессами адсорбции и десорбции устанавливается динамическое равновесие.

Рис. 4.5 Изотерма мономолекулярной адсорбции

В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 – х):

(IV.7)

(IV.8)

(IV.9)

Отсюда находим х:

(IV.10)

Разделив числитель и знаменатель правой части уравнения (IV.10) на kA, получим:

(IV.11)

Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Г о. Подставив это в уравнение (IV.11), получаем:

(IV.12)

(IV.13)

Уравнение (IV.13) есть изотерма мономолекулярной адсорбции , связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b – некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров. График изотермы адсорбции Ленгмюра приведен на рис. 4.5. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

При описании процесса адсорбции газов в уравнении (IV.13) концентрация может быть заменена пропорциональной величиной парциального давления газа:

(IV.14)

Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

Теория полимолекулярной адсорбции Поляни

На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции (рис. 4.6), форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.

Рис. 4.6 Изотерма полимолекулярной адсорбции

Для описания таких изотерм адсорбции М. Поляни предложил теорию полимолекулярной адсорбции , основанную на следующих основных положениях:

1. Адсорбция вызвана чисто физическими силами .

2. Поверхность адсорбента однородна , т.е. на ней нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.

3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата. Иначе говоря, у поверхности адсорбента существует некоторый адсорбционный объём , который при адсорбции заполняется молекулами адсорбата.

4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.

5. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не меняется.

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

(IV.15)

(IV.16)


( а)


(б)

Рис. 4.7 Изотерма адсорбции Фрейндлиха в обычных (а) и логарифмических (б)
координатах

Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения (IV.15 — IV.16), получаем:

(IV.17)

(IV.18)

Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lg a, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации (рис. 4.7):

(IV.19)

Copyright © С. И. Левченков, 1996 — 2005.


источники:

http://ru1.warbletoncouncil.org/isotermas-de-adsorcion-12751

http://physchem.chimfak.sfedu.ru/Source/PCC/Colloids_3.htm