Изучение тригонометрических уравнений и неравенств

Как научить решать тригонометрические уравнения и неравенства: методика преподавания

Курс математики корпорации «Российский учебник», авторства Георгия Муравина и Ольги Муравиной, предусматривает постепенный переход к решению тригонометрических уравнений и неравенств в 10 классе, а также продолжение их изучения в 11 классе. Представляем вашему вниманию этапы перехода к теме с выдержками из учебника «Алгебра и начало математического анализа» (углубленный уровень).

1. Синус и косинус любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример задания. Найти приближенно углы, косинусы которых равны 0,8.

Решение. Косинус — это абсцисса соответствующей точки единичной окружности. Все точки с абсциссами, равными 0,8, принадлежат прямой, параллельной оси ординат и проходящей через точку C(0,8; 0). Эта прямая пересекает единичную окружность в двух точках: Pα° и Pβ°, симметричных относительно оси абсцисс.

С помощью транспортира находим, что угол α° приближенно равен 37°. Значит, общий вид углов поворота с конечной точкой Pα°:

α° ≈ 37° + 360°n, где n — любое целое число.

В силу симметрии относительно оси абсцисс точка Pβ° — конечная точка поворота на угол –37°. Значит, для нее общий вид углов поворота:

β° ≈ –37° + 360°n, где n — любое целое число.

Ответ: 37° + 360°n, –37° + 360°n, где n— любое целое число.

Пример задания. Найти углы, синусы которых равны 0,5.

Решение. Синус — это ордината соответствующей точки единичной окружности. Все точки с ординатами, равными 0,5, принадлежат прямой, параллельной оси абсцисс и проходящей через точку D(0; 0,5).

Эта прямая пересекает единичную окружность в двух точках: Pφ и Pπ–φ, симметричных относительно оси ординат. В прямоугольном треугольнике OKPφ катет KPφ равен половине гипотенузы OPφ, значит,

Общий вид углов поворота с конечной точкой Pφ:

где n — любое целое число. Общий вид углов поворота с конечной точкой Pπ–φ:

где n — любое целое число.

Ответ: где n — любое целое число.

2. Тангенс и котангенс любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример 2. Найти общий вид углов, тангенс которых равен –1,2.

Пример задания. Найти общий вид углов, тангенс которых равен –1,2.

Решение. Отметим на оси тангенсов точку C с ординатой, равной –1,2, и проведем прямую OC. Прямая OC пересекает единичную окружность в точках Pα° и Pβ° — концах одного и того же диаметра. Углы, соответствующие этим точкам, отличаются друг от друга на целое число полуоборотов, т.е. на 180°n (n — целое число). С помощью транспортира находим, что угол Pα° OP0 равен –50°. Значит, общий вид углов, тангенс которых равен –1,2, следующий: –50° + 180°n (n — целое число)

По синусу и косинусу углов 30°, 45° и 60° легко найти их тангенсы и котангенсы. Например,

Перечисленные углы довольно часто встречаются в разных задачах, поэтому полезно запомнить значения тангенса и котангенса этих углов.

Дипломная работа: Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

«Поморский государственный университет имени М.В.Ломоносова»

Кафедра методики преподавания математики

Работа допущена к защите

Выпускная квалификационная работа

Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа

Глава 1 Тригонометрические уравнения и неравенства в школьном курсе математики.

1.1 Этапы развития тригонометрии как науки

1.2 Содержание и анализ материала по тригонометрии в различных школьных учебниках

1.3 Роль и место тригонометрических уравнений и неравенств в школьном курсе математики

1.4 Виды тригонометрических уравнений и методы их решения

1.5 Тригонометрические неравенства и методы их решения

Глава 2 Формирование умений и навыков решения тригонометрических уравнений и неравенств.

2.1 Основы формирования умений, необходимые при решении тригонометрических уравнений и неравенств

2.2 Методика формирования у учащихся умений решать тригонометрические уравнения

2.3 Методика формирования у учащихся умений решать тригонометрические неравенства

2.4 Эксперимент, его проведение и обработка результатов

В настоящее время основной задачей перестройки школьного образования является переориентация на приоритет развивающей функции обучения. Это означает, что на первый план выходит задача интеллектуального развития личности, т.е. развитие учебно-познавательной деятельности. Пожалуй, ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности.

Уже несколько десятилетий тригонометрия, как отдельная дисциплина школьного курса математики не существует, она плавно растеклась не только в геометрию и алгебру основной школы, но и в алгебру и начала анализа.

Исторически сложилось, что тригонометрическим уравнениям и неравенствам уделялось особое место в школьном курсе. Еще греки на заре человечества, считали тригонометрия важнейшей из наук. Поэтому и мы не оспаривая древних греков, будем считать тригонометрию одним из важнейших разделов школьного курса, да и всей математической науки в целом.

Тригонометрические уравнения и неравенства занимают одно из центральных мест в курсе математики средней школы, как по содержанию учебного материала, так и по способам учебно-познавательной деятельности, которые могут и должны быть сформированы при их изучении и применены к решению большого числа задач теоретического и прикладного характера.

В школьном математическом образовании с изучением тригонометрических уравнений и неравенств связаны несколько направлений:

1. Решение уравнений и неравенств;

2. Решение систем уравнений и неравенств;

3. Доказательство неравенств.

Анализ учебной, научно-методической литературы показывает, что

большое внимание уделяется первому и второму направлениям.

Требованием нашего времени является необходимость усиления прикладных направлений в обучении математике. Как показал анализ содержания школьного математического образования, возможности решения тригонометрических уравнений, а особенно тригонометрических неравенств в этом плане достаточно широки.

Так же следует заметить, что решение тригонометрических уравнений и неравенств создаёт предпосылки для систематизации знаний учащихся, связанных со всем учебным материалом по тригонометрии (например, свойства тригонометрических функций, приёмы преобразования тригонометрических выражений и т.д.) и даёт возможность установить действенные связи с изученным материалом по алгебре (уравнения, равносильность уравнений, неравенства, тождественные преобразования алгебраических выражений и т.д.).[1]

Иначе говоря, рассмотрение приёмов решения тригонометрических уравнений и неравенств предполагает своего рода перенос этих умений на новое содержание.

Актуальность исследования: анализ материала, посвященного решению тригонометрических уравнений и неравенств в учебных пособиях «Алгебра и начала анализа» для 10 – 11 классов разных авторов, учет целей изучения тригонометрических уравнений и неравенств, а так же обязательных результатов обучения, связанных с рассматриваемой темой, свидетельствует о том, что перед учителем стоит задача – формировать у учащихся умения решать уравнения и неравенства каждого вида, развивая тем самым общие тригонометрические представления.

Цель исследования: Разработать методику, направленную на формирование у учащихся умений решать тригонометрические уравнения и неравенства.

Объект исследования: процесс обучения математике.

Предмет исследования: методика формирования у учащихся умений решать тригонометрические уравнения и неравенства.

Гипотеза исследования: Если выделить основные умения, необходимые при решении тригонометрических уравнений и неравенств и разработать методику их формирования, то это будет способствовать качественному научению решать тригонометрические уравнения и неравенства.

Под осознанным и качественным изучением тригонометрии мы понимаем процесс обучения, осуществляемый с учетом идей личностно ориентированного обучения, при реализации которого не допускается формальной передачи знаний и схоластической отработки умений, т.е. изучение тригонометрии должно опираться как на логическую, так и на образную составляющие мышление, при этом учащимся должны быть предоставлены возможности для дифференциации и индивидуализации.

В процессе исследования и проверке достоверности гипотезы необходимо было решить следующие задачи:

1. Провести анализ психолого-педагогической, учебной и методической литературы по проблеме исследования.

2. Выявить роль тригонометрических уравнений и неравенств в обучении математики.

3. Выделить основы формирования умений необходимых для решения тригонометрических уравнений и неравенств.

4. Классифицировать методы решения тригонометрических уравнений и неравенств.

5. Разработать методику формирования умений и навыков решать тригонометрические уравнения и неравенства.

6. Провести экспериментальное исследование разработанной методики.

Для решения поставленных задач были использованы следующие методы исследования:

1. Анализ психолого-педагогической и методической литературы.

2. Анализ учебно-методических пособий, учебников, дидактических материалов.

3. Наблюдения, беседы с учителями.

4. Педагогический эксперимент.

Структура работы. Работа состоит из двух глав, введения и заключения. Во введении подчеркнута актуальность изучения проблемы. Первая глава посвящена рассмотрению значимости тригонометрического материала в школьном курсе математики, классификации тригонометрических уравнений и неравенств, а так же методов их решений. Во второй главе описаны основные умения, необходимые при решении тригонометрических уравнений и неравенств и методика формирования умений решать тригонометрические уравнения и неравенства. Список литературы включает 32 источника.

Глава 1 Тригонометрические уравнения и неравенства в ШКМ

1.1 Этапы развития тригонометрии как науки

Тригонометрия является одним из наиболее молодых отделов элементарной математики, получивших окончательное оформление лишь в XVIII в., хотя отдельные идеи её относятся к глубокой древности, к античному миру и к математическому творчеству индусов (К. Птолемей, II в., Аль Баттани, IX в., и др.). Европейские математики достигли высокой степени совершенства в вычислении таблиц натуральных синусов и тангенсов (Региомонтанус, XV в., Ретикус и Питискус, XVI в., и др.).

Само название «тригонометрия» греческого происхождения, обозначающее «измерение треугольников»: (тригонон) – треугольник, (метрейн) – измерение.

Научная разработка тригонометрии осуществлена Л. Эйлером в его труде «Jntroductio in analysis infinitorum» (1748). Он создал тригонометрию как науку о функциях, дал ей аналитическое изложение, вывел всю совокупность формул из немногих основных формул. Обозначение сторон малыми буквами и противолежащих углов — соответствующими большими буквами позволило ему упростить все формулы, внести в них ясность и стройность. Эйлеру принадлежит мысль рассматривать тригонометрические функции как отношения соответствующих линий к радиусу круга, т. е. как числа, причём радиус круга как «полный синус» он принял за единицу. Эйлер получил ряд новых соотношений, установил связь тригонометрических функций с показательными, дал правило знаков функций для всех четвертей, получил обобщённую формулу приведения и освободил тригонометрию от многих ошибок, которые допускались почти во всех европейских учебниках математики.

Сочинение Л. Эйлера в дальнейшем послужило фундаментом для учебников тригонометрии. Одно из первых руководств, «Сокращённая математика» С. Румовского (1760), отдел «Начальные основания плоской тригонометрии», начинает изложение следующим образом: «Тригонометрия плоская есть знание через Арифметические выкладки сыскивать треугольники, которые геометрия черченьем находит». Всё изложение сводится к решению треугольников (самые простые случаи), вычисления проводятся весьма сложным путём, учение о функциях отсутствует.

Таким образом, тригонометрия возникла на геометрической основе, имела геометрический язык и применялась к решению геометрических задач. Развитие алгебраической символики позволило записывать тригонометрические соотношения в виде формул; применение отрицательных чисел позволило рассматривать направленные углы и дуги и распространить понятие тригонометрических линий (определенных отрезков в круге) для любых углов. В этот период создалась база для изучения тригонометрических функций как функций числового аргумента, основа аналитической теории тригонометрических (круговых) функций. Аналитический аппарат, позволяющий вычислять значения тригонометрических функций с любой степенью точности, был разработан Ньютоном.[25]

Современный вид тригонометрия получила в трудах великого ученого, члена Российской академии наук Л. Эйлера (1707 – 1783). Эйлер стал рассматривать значения тригонометрических функций как числа – величины тригонометрических линий в круге, радиус которого принят за единицу («тригонометрический круг» или «единичная окружность»). Эйлер дал окончательное решение о знаках тригонометрических функций в разных четвертях, вывел все тригонометрические формулы из нескольких основных, установил несколько неизвестных до него формул, ввел единообразные обозначения. Именно в его трудах впервые встречаются записи . Он также открыл связь между тригонометрическими и показательной функциями от комплексного аргумента. На основании работ Л. Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности.

Аналитическое (не зависящее от геометрии) построение теории тригонометрических функций, начатое Эйлером, получило завершение в трудах великого русского ученого Н.И. Лобачевского.

Современная точка зрения на тригонометрические функции как на функции числового аргумента во многом обусловлена развитием физики, механики, техники. Эти функции легли в основу математического аппарата, при помощи которого изучаются различные периодические процессы: колебательные движения, распространение волн, движения механизмов, колебание переменного электрического тока. Как показал Ж. Фурье (1768 – 1830), всякое периодическое движение с любой степенью точности можно представить в виде суммы простейших синусоидальных (гармонических) колебаний. Если в начале развития тригонометрии соотношение лишь выражало зависимость между площадями квадратов, построенных на сторонах переменного прямоугольного треугольника с гипотенузой равной 1, то в последующем это отношение стало отражать также сложение двух колебательных движений с происходящей при этом интерференцией.

Таким образом, на первоначальных стадиях своего развития тригонометрия служила средством решения вычислительных геометрических задач. Ее содержанием считалось вычисление элементов простейших геометрических фигур, то есть треугольников. Но в современной тригонометрии самостоятельное и столь же важное значение имеет изучение свойств тригонометрических функций. Этот период развития тригонометрии был подготовлен всем ходом развития механики колебательных движений, физики звуковых, световых и электромагнитных волн.

В этот период даны обобщения многим терминам тригонометрии и, в частности, выведены соотношения для , где n – натуральное число, и др. Функции и рассматриваются теперь как суммы степенных рядов:

Почти также изложен и учебник В. Никитина и П. Суворова.
Вполне научное изложение тригонометрии даёт акад. М. Е. Головин в своём учебнике «Плоская и сферическая тригонометрия с алгебраическими доказательствами», 1789. В этой книге можно найти все важнейшие формулы тригонометрии почти в том виде, в каком принято излагать их в XIX в. (за исключением обратных тригонометрических функций). Автор не нашёл нужным загромождать изложение введением секанса и косеканса, так как эти функции в редких случаях применяются на практике.
В 1804 г. выходит учебник Н. Фусса. Книга предназначена для гимназий. «Плоская тригонометрия,— говорит автор,— есть наука, имеющая предметом из трёх данных и числами изображённых частей прямолинейного треугольника определять три прочие его части». Учебник состоит из 4 равных частей. Общие понятия, решение треугольников, приложение тригонометрии к практической геометрии и геодезии и, наконец, теорема сложения. Учебник Н. Фусса отмежёвывается от сферической тригонометрии.

Шаг вперёд делает академик М. В. Остроградский в 1851 г. В своём конспекте по тригонометрии для руководства в военно-учебных заведениях он выступает как сторонник определения тригонометрических функций, на первом этапе их изучения, как отношений сторон в прямоугольном треугольнике с последующим обобщением их определения и распространением его на углы любой величины. [24]

1.2 Содержание и анализ материала по тригонометрии в различных школьных учебниках

Анализ материала, посвящённого решению тригонометрических уравнений и неравенств, в учебнике «Алгебра и начала анализа» для 10-11 классов под ред. А.Н.Колмогорова и в учебнике «Алгебра и начала анализа» для 10-11 классов авторов Ш.А. Алимова и др. свидетельствует, что различные виды тригонометрических уравнений и неравенств представлены в пособиях по математике для средней школы. Значит, перед учителем стоит задача – формировать у учащихся умения решать уравнения и неравенства каждого вида.

Рассмотрим содержание материала по тригонометрии изложенного в различных учебниках по математике за курс 10 – 11 класс средней школы, с целью его сравнения, анализа и формироваания наиболее приемлемой методики внедрения данной темы в школьном курсе математики.

Башмаков М.И. Алгебра и начала анализа. 10-11

Учебник разбит на 6 глав. Каждая глава открывается списком вопросов и задач. Затем коротко формулируются результаты, которые необходимо достичь после изучения главы. Материал, касающийся темы «Решение тригонометрических уравнений и неравенств» представлен в главе III «Тригонометрические функции» после изучения глав «Функции и графики» и «Производная и её применение».

Четвёртая глава «Показательная и логарифмическая функции» и пятая глава «Интеграл и его применение» не содержат обращений к области тригонометрии вообще, а в шестой главе «Уравнения и неравенства» встречаются и тригонометрические уравнения, и тригонометрические неравенства.

Обращаясь в главе III к теме «Тригонометрические функции» М.И. Башмаков считает нужным повторить такие темы как: измерение углов; соотношения в треугольнике; вращательное движение; техника вычислений. Далее вводятся: определения и простейшие свойства тригонометрических функций; формулы приведения; значения тригонометрических функций.

Причём, здесь же вводится основное тригонометрическое тождество.

Здесь же М.И Башмаков рассматривает вопрос решения простейших тригонометрических уравнений по тригонометрической окружности.

Следующие разделы данной темы «Исследование тригонометрических функций» и «Тождественные преобразования». Лишь после этого в разделе «Решение уравнений и неравенств» вводятся различные виды уравнений и некоторые виды неравенств. И соответственно здесь же говорится о способах и методах их решения.

Схема изучения темы «Решение тригонометрические уравнений и неравенств» определяется следующим образом: функция → уравнения → преобразования. [3]

Мордкович А.Г. Алгебра и начала анализа. 10-11

Учебник разбит на 8 глав. В конце изучения каждой главы чётко обозначены основные результаты изучения. Курс изучения математики в 10 классе начинается с изучения главы «Тригонометрические функции». Здесь автор вводит понятия тригонометрической окружности на координатной плоскости, понятия синус и косинус, основные тригонометрические соотношения с ними связанные, решения простейших уравнений по тригонометрической окружности. Как таковые формулы приведения вводятся после изучения тригонометрических функций углового аргумента. Далее рассматриваются свойства и графики тригонометрических функций. Во второй главе «Тригонометрические уравнения» подробно рассматривается решение каждого простейшего тригонометрического уравнения, на основе ранее введенных понятий арксинуса, арккосинуса, арктангенса. В этой же главе рассмотрены такие методы решения: разложение на множители и введение новой переменной; метод решения однородных тригонометрических уравнений. Другие методы решения рассматриваются после изучения третьей главы «Преобразование тригонометрических выражений».

Здесь схема изучения выглядит следующим образом: функция → уравнения → преобразования.

С точки зрения применения учебник Мордковича удобен для самостоятельного изучения учащимися, т.к. он содержит сильную теоретическую базу. Изложение теоретического материала ведётся очень подробно. В условиях острой нехватки часов для проведения занятий в классе возрастает значение самостоятельной работы учеников с книгой. Опираясь на учебник, учитель прекрасно разберётся в том, что надо рассказать учащимся на уроке, что заставить их запомнить, а что предложить им просто прочесть дома.

К недостаткам можно отнести не очень большое количество упражнений по этой теме в самом учебнике.[19]

Колмогоров А.Н. Алгебра и начала анализа

Учебник содержит 4 главы. Схема изучения материала по теме «Решение тригонометрических уравнений и неравенств» радикально отличается от предыдущих, т.к. сначала рассматриваются тригонометрические функции числового аргумента и основные формулы тригонометрии. В этой же первой главе, но несколько позже, рассматриваются основные свойства тригонометрических функций, их графики и их исследование. После этого вводятся понятия арксинус, арккосинус, арктангенс, арккотангенс и «параллельно» с этим решение простейших тригонометрических уравнений и неравенств. Автор не называет методов решения тригонометрических уравнений, а описывает алгоритм их решения. Тоже касается и решения тригонометрических неравенств.

Таким образом, схема изучения выглядит так: преобразования функции уравнения.

Стоит отметить, что учебник содержит достаточно много дидактических материалов, как простых так и более сложных. Это естественно обеспечивает учителю возможность варьировать задания для учащихся.

С точки зрения изложения теоретического материала нельзя сказать, что учебник идеально подходит для самостоятельного изучения.[14]

Анализ содержания набора задач в теме «Тригонометрические уравнения» приводит к следующим выводам:

1) преобладающими являются простейшие тригонометрические уравнения, решение которых основано на определениях соответствующих функций в понятиях арксинуса, арккосинуса, арктангенса числа;

2) фактически отсутствуют тригонометрические уравнения, способ решения которых основан на свойстве ограниченности синуса и косинуса;

3) если говорить о связях приемов решения тригонометрических уравнений с приемами тождественных преобразований тригонометрических и алгебраических выражений, то следует отметить, что эти приемы в учебном пособии представлены бедно и однообразно. Рассматриваются приемы тождественных преобразований:

а) тригонометрические выражения:

— прием использования основного тригонометрического тождества;

— прием использования формул двойного и половинного аргументы;

— прием преобразования суммы тригонометрических выражений в произведение;

б) алгебраических выражений:

— прием разложения на множители;

— прием преобразования тригонометрического выражения, представляющего собой однородный многочлен относительно синуса и косинуса.

Использование указанных приемов приводит к тригонометрическим уравнениям, которые условно можно разделить на следующие виды:

а) сводящиеся к квадратным относительно тригонометрической функции;

б) сводящиеся к дробно-рациональным относительно тригонометрической функции;

в) сводящиеся к однородным;

г) сводящиеся к виду , где — тригонометрическая функция . [16, c/55]

1.3 Роль и место тригонометрических уравнений и неравенств в ШКМ

Тригонометрия традиционно является одной из важнейших составных частей школьного курса математики. И этот курс предполагает задачи, решить которые, как правило, можно, пройдя целенаправленную специальную подготовку.

Анализ школьных учебников по математике в полной степени определяет место тригонометрических уравнений и неравенств в линии изучения уравнений и линии изучения неравенств.

Изучению темы «Решение тригонометрических уравнений» часто предшествует изучение таких тем как «Преобразование тригонометрических выражений» и «Основные свойства и графики тригонометрических функций». В разделе «Решение тригонометрических уравнений и неравенств» мы знакомим учащихся с понятиями арксинус, арккосинус, арктангенс.

Опыт преподавания математики показывает, что осознание важности изучаемого материала приходит к ученикам не в процессе его изучения, а в процессе его применения при решении других заданий, т.е. тогда когда он становится средством для решения других задач.

Так, например, решение уравнения , сводится к простейшему уравнению , причём частному виду простейшего, после элементарного преобразования выражения, стоящего в левой части уравнения по формулам сложения косинуса. Аналогичная ситуация может возникнуть и при решении тригонометрических неравенств. Неравенства вида , в принципе становится решаемым только после преобразования выражения стоящего в правой части неравенства. Получим, , а затем с помощью таблицы значений основных тригонометрических функций имеем простое неравенство , решение которого не должно вызвать затруднений у учащихся.

Мы видим, что именно здесь школьники могут наблюдать пользу от изучения формул тригонометрии. С их помощью нерешаемое на первый взгляд уравнение или неравенство принимает достаточно простой и, главное знакомый вид. Примерно то же самое происходит и при решении тригонометрических неравенств.

При таком подходе изучения тригонометрии, когда уравнения и неравенства изучаются после формул преобразования тригонометрических выражений, место тригонометрических уравнений и неравенств определяется через систематизацию знаний по темам «Преобразование тригонометрических выражений» и «Основные свойства и графики тригонометрических функций».

Если же тригонометрические уравнения и неравенства изучаются до темы «Преобразование тригонометрических выражений», то здесь место их изучения определяется совершенно противоположным образом. Здесь на изучение тригонометрических уравнений отводится больше времени: как только появляется новая формула, она сразу же используется для решения уравнений или неравенств. То есть в данном случае не формула преобразования является средством для решения тригонометрического уравнения или неравенства, а уравнение выступает как средство закрепления тригонометрических формул.

Таким образом, при любом подходе к изучению тригонометрии, роль изучения уравнений и неравенств неизмеримо велика, не зависимо от места их изучения. Ну и как следствие из этого велико и неизмеримо место изучения методов решения и тригонометрических уравнений и тригонометрических неравенств. Т.к. авторы учебников не уделяют должного внимания обозначению методов решения тригонометрических уравнений и неравенств, попробуем классифицировать уравнения и неравенства, и соответственно методы их решения.

1.4 Виды тригонометрических уравнений и методы их решения

Материал, относящийся к тригонометрии, изучается не единым блоком, учащиеся не представляют себе весь спектр применения тригонометрического материала, дробление на отдельные темы приводит к тому, что тригонометрия изучается в течение нескольких лет.

Необходимость классификации уравнений и неравенств вызывается невозможностью найти общий метод их решения. Очевидно, что классифицировать тригонометрические уравнения и неравенства имеет смысл с опорой на методы их решения. Мы будем рассматривать типы уравнений и неравенств в той последовательности, которая представляется нам наиболее приемлемой для обучения школьников, то есть в последовательности, построенной в соответствии с принципом «от простого к сложному».

1.4.1 Уравнения, сводящиеся к простейшим

Практически все тригонометрические уравнения считаются «сводящимися к простейшим», но можно выделить ряд уравнений которые сводятся к простейшим достаточно просто. Рассмотрим сначала виды простейших уравнений.

К простейшим тригонометрическим уравнениям относятся уравнения вида: , , , .

На эти уравнения следует обратить особое внимание, так как без умения их решать невозможно решить никакое другое тригонометрическое уравнение. Лучше всего, если учащиеся будут иметь схемы решения каждого из простейших уравнений

Уравнение вида .

Если , то

Если , то (рис 1, а)

;

;

;

Любая из этих формул может быть заменена формулой общего вида, однако они проще и их выгоднее применять при решении уравнений.

Полезно помнить, что при; ;

.

Уравнение вида .

Если , то

Если , то (рис 1, д)

;

;

;

Нужно помнить, что при ;

;

.

Уравнение вида .

(рис 1, и)

Нужно помнить, что при ; ;

Уравнение вида .

(рис 1, к)

Нужно помнить, что при ; ;

;

Уравнения, сводящиеся к простейшим, имеют вид , , , .

Данные уравнения также являются простейшими и решаются сначала относительно f ( x ) , а затем полученные уравнения решаются относительно х.

1. ;

2.

3.

1.4.2 Уравнения, являющиеся равенством двух одноимённых тригонометрических функций:

а) уравнения вида равносильно совокупности уравнений:

б) уравнения вида равносильно системе уравнений:

в) уравнения вида равносильно системе уравнений:

1. Решите уравнение:

2. Решите уравнение:

1.4.3 Тригонометрические уравнения, содержащие одну и ту же функцию одного и того же аргумента и решаемые методом подстановки

Уравнения данного вида , где тригонометрическая функция часто называются сводящимися к квадратным и решаются методом подстановки вместо тригонометрической функции данного аргумента некоторого параметра t с учётом допустимых значенийt в зависимости от области значения функции.

Пример: Решите уравнение:

Пусть тогда уравнение примет вид:

Оба корня уравнения удовлетворяют условию допустимого значения t , следовательно, переходим к обратной замене.

[29]

1.4.4 Однородные уравнения

Предварительно можно показать учащимся вид однородной функции от двух переменных U и V первой степени, например, 3 U + 2 V ; второй степени: ; третьей степени: и т.д., сформировав понятия выражения, однородного относительно переменных U и V .

Для лучшего усвоения и закрепления идеи необходимо решить с учащимися следующее уравнение:

.

Обозначим

Получается однородное уравнение второй степени:

;

Имеем 2 случая: U = Vили V = 0,5 U

Как правило, на практике очень часто встречается .

1. .

Это однородное уравнение первой степени. Обе части уравнения нужно разделить на cosx . При этом получится равносильное уравнение. Чтобы в этом удостовериться, покажем, что уравнение cosx = 0 не содержит корней данного уравнения.

, то .

Но это невозможно, т.к. .

Следовательно, имеем равносильное уравнение

2. .

Это однородное уравнение второй степени. Получим равносильное уравнение после деления обеих частей уравнения на .

[5, c.9]

1.4.5 Уравнения, решающиеся разложением на множители

При решении уравнений такого типа необходимо пользоваться известным правилом: произведение нескольких множителей равно нулю, если хотя бы один из них равен нулю, а остальные при этом имеют смысл.

1.

Используя данное правило получим:

или

2.

Сгруппируем соответствующие слагаемые, получим:

1.4.6 Уравнения вида

Один из способов решения такого уравнения состоит в том, что левую часть уравнения можно преобразовать по формуле:

1.

;

, т.к. это решение системы

Подставляя в формулу, получаем:

2.

, т.к. это решение системы

Подставляя в формулу, получаем

К сожалению, внимание учащихся нечасто обращается на преобразование выражения .

В некоторых пособиях эта формула приведена в таком виде

где .

Такая запись приведёт к ошибке, если, например, a и b отрицательны.[10]

Выделенные виды тригонометрических уравнений представлены в пособиях по математике для средней школы. Значит, перед учителем стоит задача – формировать у учащихся умения решать уравнения каждого вида.

1.5 Тригонометрические неравенства и методы их решения

1.5.1 Решение простейших тригонометрических неравенств

Большинство авторов современных учебников по математике предлагают начать рассмотрение данной темы с решения простейших тригонометрических неравенств. Принцип решения простейших тригонометрических неравенств основан на знаниях и умениях определять на тригонометрической окружности значения не только основных тригонометрических углов, но и других значений.

Между тем, решение неравенств вида , , , можно осуществлять следующим образом: сначала находим какой-нибудь промежуток (), на котором выполняется данное неравенство, а затем записываем окончательный ответ, добавив к концам найденного промежутка число кратное периоду синуса или косинуса: (). При этом значение находится легко, т.к. или . Поиск же значения опирается на интуицию учащихся, их умение заметить равенство дуг или отрезков, воспользовавшись симметрией отдельных частей графика синуса или косинуса. А это довольно большому числу учащихся иногда оказывается не под силу. В целях преодоления отмеченных трудностей в учебниках в последние годы применялся разный подход к решению простейших тригонометрических неравенств, но улучшения в результатах обучения это не давало.

Мы на протяжении ряда лет для нахождения решения тригонометрических неравенств довольно успешно применяем формулы корней соответствующих уравнений.

Изучение данной темы осуществляем таким образом:

1. Строим графики и у = а , считая, что .

Затем записываем уравнение и его решение . Придавая n 0; 1; 2, находим три корня составленного уравнения: . Значения являются абсциссами трёх последовательных точек пересечения графиков и у = а . очевидно, что всегда на интервале () выполняется неравенство , а на интервале () – неравенство .

Добавив к концам этих промежутков число, кратное периоду синуса, в первом случае получим решение неравенства в виде: ; а во втором случае – решение неравенства в виде:

2. Далее проводим аналогичные рассуждения для косинуса

Только в отличие от синуса из формулы , являющейся решением уравнения , при n = 0 получаем два корня , а третий корень при n = 1 в виде . И опять являются тремя последовательными абсциссами точек пересечения графиков и . В интервале () выполняется неравенство , в интервале () – неравенство

Теперь нетрудно записать решения неравенств и . В первом случае получим: ;

а во втором: .

Подведём итог. Чтобы решить неравенство или , надо составить соответствующее уравнение и решить его. Из полученной формулы найти корни и , и записать ответ неравенства в виде: .

При решении неравенств , из формулы корней соответствующего уравнения находим корни и , и записываем ответ неравенства в виде: .

Данный приём позволяет научить решать тригонометрические неравенства всех учащихся, т.к. этот приём полностью опирается на умения, которыми учащиеся владеют прочно. Это умения решать простейшие и находить значение переменной по формуле. Кроме того, становится совершенно необязательным тщательное прорешивание под руководством учителя большого количества упражнений для того, чтобы продемонстрировать всевозможные приёмы рассуждений в зависимости от знака неравенства, значения модуля числа a и его знака. Да и сам процесс решения неравенства становится кратким и, что очень важно, единообразным.

Ещё одним из преимуществ данного способа является то, что он позволяет легко решать неравенства даже в том случае, когда правая часть не является табличным значением синуса или косинуса.

Продемонстрируем это на конкретном примере. Пусть требуется решить неравенство . Составим соответствующее уравнение и решим его:

Найдём значения и .

При n = 1

При n = 2

Записываем окончательный ответ данного неравенства:

или

.

В рассмотренном примере решения простейших тригонометрических неравенств недостаток может быть только один – наличие определенной доли формализма. Но если всё оценивать только с этих позиций, то тогда можно будет обвинить в формализме и формулы корней квадратного уравнения, и всех формул решения тригонометрических уравнений, и многое другое.[11]

Предложенный метод хоть и занимает достойное место в формировании умений и навыков решения тригонометрических неравенств, но нельзя и преуменьшать важность и особенности других методов решения тригонометрических неравенств. К таковым относится и метод интервалов.

Рассмотрим его сущность.

1.5.2 Метод интервалов

Многолетний опыт преподавателей математики убеждает, что учащиеся, успешно решающие тригонометрические уравнения, часто испытывают серьезные затруднения при решении тригонометрических неравенств, допуская много ошибок в окончательном отборе решений, после того как выполнена основная часть работы. Ошибки появляются из-за невнимательности или в силу того, что учащиеся не поняли каких-то специфических особенностей неравенства. Не помогает и проверка. Она не всегда достаточна, для того чтобы обнаружить ошибку. К тому же при наличии в ответе одного-двух интервалов проверка утомительна, а при большем количестве интервалов техническая сложность проверки многократно возрастает.

В связи с этим разработан особый методический подход к заключительному этапу решения тригонометрического неравенства, который удобно разъяснять учащимся с помощью специально составленного алгоритмического предписания.

1. Привести неравенство к такому виду, чтобы в одной его части (например, в правой) стоял ноль.

2. Определить нули и точки разрыва функции, стоящей в левой части неравенства.

3. Расставить на единичной окружности точки, являющиеся представителями всех найденных чисел.

4. Выбрать произвольное число (значение аргумента функции, стоящей в левой части неравенства), не совпадающее ни с одним из ранее полученных чисел.

5. Провести луч под углом к координатному лучу Ох .

6. На луче получить контрольную точку . Для этого подставить число в левую часть неравенства и определить знак получившегося выражения.

Если выражение больше нуля, то — это произвольная точка луча , лежащая вне единичной окружности.

Иначе — это произвольная точка луча внутри единичной окружности.

7. Начиная с точки провести плавную линию так, чтобы она пересекала единичную окружность во всех отмеченных точках последовательно в порядке обхода единичной окружности против часовой стрелки. Пройдя все точки, линия должна вернуться в точку .

8. Выбрать нужные участки конфигурации, которую образовала проведённая линия. Для этого:

Если выражение, стоящее в левой части неравенства, больше нуля, то выбрать участки фигуры, лежащие вне единичной окружности.

Иначе – выбрать те участки фигуры, которые расположены внутри единичной окружности.

9. Отметить стрелками в положительном направлении те дуги единичной окружности, которые принадлежат выбранным участкам. Эти дуги соответствую множеству решений неравенства.

Проиллюстрируем данный метод интервалов решения тригонометрических неравенств.

Пример 1. Решите неравенство .

Приведём левую часть неравенства к виду и рассмотрим уравнение , которое равносильно совокупности уравнений: .

Первое из уравнений этой совокупности даёт I серию значений х : ,

Второе из уравнений совокупности приводит ко II серии .

Далее заполним тригонометрическую окружность соответствующими точками. Для I серии достаточно взять . Тогда значения соответственно равны (при остальных значениях n точки будут повторяться). Значения из серии на единичной окружности можно представить точками и , которые получены при n =0 и n =1.

Выберем теперь контрольную точку, положив . Тогда .

Значит, в данном случае луч совпадает с координатным лучом Ох (угол между ними равен нулю). Выберем на луче произвольную точку , находящуюся вне единичной окружности.

Соединим точку со всеми отмеченными точками на единичной окружности так, как показано на рисунке

Решению исходного неравенства соответствуют дуги единичной окружности в тех областях, которые отмечены на рисунке знаком « + « . При записи окончательного ответа следует иметь в виду, что в одной из областей (она показана пунктирной стрелкой) нарушается переход от меньших значений х к большим. В таком случае следует к меньшему значению прибавить . Итак, окончательное решение можно записать в виде совокупности промежутков:

, n Î Z

Заметим, что если волнообразную линию после обхода ею всех отмеченных на единичной окружности точек не удаётся вернуть в точку , не пересекая окружность в «незаконном» месте, то это означает, что в решении допущена ошибка, а именно пропущено учётное количество корней.

Приведённый пример имеет одну особенность. Серии и дают на единичной окружности несовпадающие точки. Если же некоторые точки разных серий совпадают, то будем называть их кратными. Точки, которые повторяются в чётном числе серий, будем называть точками чётной кратности, а те, что повторяются в нечётном числе серий, — точками нечётной кратности. Волнообразная линия, идущая от точки , после встречи с точкой нечётной кратности обязана перейти в иную область, т.е. если она находилась вне единичной окружности, то теперь будет внутри неё и наоборот. Но точка чётной кратности не даёт нашей линии возможности перейти в иную область. Поясним данный факт на конкретном примере:

Пример 2: Решите неравенство

Рассмотрим совокупность уравненийОтсюда

На единичной окружности значения серии представлены двумя точками 0 и . Серия даёт точки Из серии получаем точки Нанесём все эти точки на единичную окружность указав в скобках рядом с каждой из них её кратность.

Пусть теперь число будет равным . Делаем прикидку по знаку:

. Значит, точку следует выбрать на луче, образующем угол с лучом Ох , вне единичной окружности. (Заметим, что вспомогательный луч совсем не обязательно изображать на рисунке. Точка выбирается приблизительно). Теперь от точки ведём волнообразную непрерывную линию последовательно ко всем отмеченным точкам. Причём в точках наша линия переходит из одной области в другую: если она находилась вне единичной окружности, то переходит внутрь неё. Подойдя к точке линия возвращается во внутреннюю область, так как кратность этой точки чётная. Аналогично в точке (с чётной кратностью) линию приходится повернуть во внешнюю область. Итак, мы начертили некую картинку.

Она помогает нам выделить на единичной окружности искомые области. Они обозначены знаком « +».

Окончательный ответ запишем в виде совокупности неравенств:

Глава 2. Формирование умений и навыков решения тригонометрических уравнений и неравенств

2.1 Основные умения, необходимые при решении тригонометрических уравнений и неравенств

В методической литературе существуют различные трактовки понятия «умения». Например, Петровский А.В. под «умениями» понимает способность использовать имеющиеся данные, знания или понятия, оперировать ими для выявления существенных свойств вещей и успешного решения определенных теоретических или практических задач.[22]

По мнению Булыгиной Т.Б. «умения – это способность осознанно выполнять определенное действие».[32]

Матюхина М.В. дает следующее определение: «умение – сочетание знаний и навыков, которое обеспечивает успешное выполнение деятельности». Навыки – это автоматизированные способы выполнения действий. Знания – это разновидность субъективных образов в сознании. Понятие – это форма знания, которая отражает единичное и особенное, являющееся одновременно и всеобщим.[6]

Рассмотрим следующее понятие – «формирование умений». Под ним понимается деятельность учителя, связанная с организацией усвоения определенного элемента социального опыта учеником.

Формирование умений – это овладение всей сложной системой операций по выявлению и переработке информации, содержащейся в знаниях и получаемой от предмета, по сопоставлению и соотнесению информации с действиями.

Формирование умений выступает, прежде всего, как продукт все углубляющихся знаний. Умения формируются на основе освоения понятий о различных сторонах и свойствах изучаемых объектов. Главный путь формирования умений – это приучение учащихся видеть различные стороны в объекте, применять к нему разнообразные понятия, формулировать в понятиях многообразные отношения этого объекта. Учащихся надо научить преобразовывать объект с помощью синтеза через анализ. Применяемые преобразования зависят от того, какие отношения и зависимости требуется установить. Схема таких преобразований и есть план решения задачи.

Научение умениям может осуществляться разными путями. Один из них заключается в том, что учащемуся сообщают необходимые знания, затем перед ним ставят задачи на их применение. И учащийся сам ищет решения, обнаруживая путем проб и ошибок соответствующие ориентиры, способы переработки информации и приемы деятельности. Этот путь называют проблемным обучением. Другой путь заключается в том, что учащихся обучают признакам, по которым можно однозначно распознать тип задач и требуемые для ее решения операции. Этот путь называют алгоритмизированным обучением или обучением на полной ориентировочной основе. Наконец, третий путь заключается в том, что учащегося обучают самой психической деятельности, необходимой для применения знаний. В этом случае педагог не только знакомит учащегося с ориентирами отбора признаков и операций, но и организует деятельность учащегося по переработке и использованию полученной информации для решения поставленных задач. Это достигается систематическим проведением учащегося через все этапы деятельности, требующей ориентировки на признаки, которые закреплены в изучаемом понятии. На первом этапе эти ориентиры (существенные признаки) предмета предъявляются ученику в готовом, материализованном виде, в виде схем, символа, предметов, а операции по выделению ориентиров осуществляются в форме предметных действий. На втором этапе ориентиры и предметные операции заменяются речевыми обозначениями и действиями. На третьем этапе отпадают и словесные действия, их заменяют мыслительные операции, которые протекают по все более свернутой схеме. Эту концепцию называют методикой поэтапного формирования умственных действий.[6]

Фактически эти этапы проходит каждый человек при формировании новых понятий. Однако при обычном обучении эти этапы не организуются сознательно. Поэтому ученик вынужден сам искать и обнаруживать нужные существенные или логические признаки, а главное – сам подбирать для этого действия. Неизбежно возникают ошибки. Понятия формируются не всегда полные и верные. Традиционное обучение, основанное на «самостоятельном» осмысливании и корректировке через результаты, является следствием неполноты ориентировочной деятельности ученика.

Причем деятельность ученика не должна сводиться к созданию понятий, нахождению их признаков, а к тому, чтобы наполнить сообщаемые понятия значением, то есть усвоить способы их использования, — это деятельность не по самостоятельному отыскиванию существенных признаков вещей, закрепленных в понятиях, а по применению этих признаков. Чтобы понятия формировались полно и безошибочно, соответствующая деятельность ученика должна строиться на полной ориентировочной основе. Иначе говоря, учитель должен давать ученику готовыми все существенные признаки объектов и обучать ребенка тем операциям, каких требует каждый из признаков для его выявления и воспроизведения.[30]

Говоря об умениях решать тригонометрические уравнения и неравенства, нужно иметь в виду, что эти умения образуют целый комплекс, в который среди прочих входят следующие:

— умения отыскать на числовой окружности точки, соответствующие заданным числам, выраженных в долях числа (, и т.д.) и не выраженных в долях числа (М(2), М(-7), М(6) и т.д.);

— умение изображать числа точкой числовой окружности и надписывать точки (имеется в виду определять все числа, которые соответствуют данной точке);

— умение изображать числа на числовой окружности по значению одной из тригонометрических функций;

— составлять двойные неравенства для дуг числовой окружности;[20]

— умение провести анализ предложенного уравнения или неравенства с целью получения оснований для отнесения уравнения к одному из известных видов;

— умение осуществить обоснованный выбор приема решения;

— умение решать простейшие тригонометрические уравнения и неравенства и иллюстрировать решение с помощью графика, тригонометрического круга;

— умение применять свойства тригонометрических функций при решении уравнений и неравенств;

— умение выполнять тождественные преобразования тригонометрических выражений, которое, в свою очередь, предполагает умение применять приемы преобразований алгебраических выражений и соответствующие тригонометрические формулы;

— умение решать алгебраические уравнения определенных видов (линейные, квадратные, дробно-рациональные, однородные, сводящиеся к совокупностям алгебраических уравнений указанных видов) и др.[28]

Перечисленные умения формируются в течение длительного времени, рядом из них учащиеся должны владеть, приступая к изучению тригонометрических уравнений. Но рассмотрение приемов решения тригонометрических уравнений или неравенств предполагает своего рода перенос этих умений на новое содержание.

Анализ программ по математике для средней школы, учет целей изучения тригон6ометрических уравнений и неравенств, а также обязательных результатов обучения, связанных с рассматриваемой темой, приводит к выводу, что указанные умения должны быть усвоены, по крайней мере, на уровне применения «в ситуации по образцу». Предложенные ниже методики предусматривает овладение учащимися умениями решать простейшие тригонометрические уравнения и неравенства, и знакомство с приемами решения тригонометрических уравнений и неравенств других видов.[6]

2.2 Методика формирования у учащихся решать тригонометрические уравнения

В процессе формирования у школьников умений решать тригонометрические уравнения рекомендуется выделить три этапа:

2. формирование умений решать простейшие тригонометрические уравнения и неравенства,

3. введение тригонометрических уравнений и неравенств других видов и установление приемов их решения.

Цель подготовительного этапа состоит в том, чтобы, во-первых, начать формирование у школьников умения использовать тригонометрический круг или график функции для решения уравнения; во-вторых, познакомить учащихся с применением свойств тригонометрических функций для решения уравнений вида и т.п.; в-третьих, специально обратить внимание школьников на применение различных приемов преобразований выражений при решении тригонометрических уравнений.

Реализовать этот этап рекомендуется в процессе систематизации знаний школьников о свойствах тригонометрических функций. Основным средством могут служить задания, предлагаемые учащимся и выполняемые либо под руководством учителя, либо самостоятельно. Приведем примеры таких заданий:

1) найти все числа отрезка , для которых верно и т.п.,

2) отметить на единичной окружности точки Pt , для которых соответствующие значения t удовлетворяют равенству и т.п.,

3) используя график функции , указать множество чисел, для которых верно

4) решить уравнения

а) ,

б) ,

в) ,

г) ,

д) ,

5) решить уравнения:

а) ,

б) ,

в) .

Обратим внимание на два последних задания. В основе решения предложенных уравнений, как правило, – применение определений синуса, косинуса числа (либо таких свойств тригонометрических функций, как наличие корней, наличие экстремумов у функций синус и косинус). Выполнение пятого задания предполагает решение совокупностей тригонометрических уравнений рассматриваемого вида (например, последнее уравнение преобразуется следующим образом: , то есть имеем совокупность уравнений или ). Следует специально обратить внимание учащихся на цель преобразований тригонометрических выражений при решении предложенных уравнений: замена данного выражения, тождественно ему равным и зависящим от одной тригонометрической функции, либо преобразование выражения в произведение линейных множителей относительно тригонометрических функций.

Реализация второго этапа обучения школьников решению тригонометрических уравнений, на котором происходит формирование умений решать простейшие уравнения, предполагает введение понятий «арксинус числа», «арккосинус числа» и т.д., получение общих формул решения простейших тригонометрических уравнений, формирование умений иллюстрировать решение простейших тригонометрических уравнений с помощью графика соответствующей функции или тригонометрического круга.

В настоящее время понятия арксинуса, арккосинуса числа и т.д. вводятся без обращения к функции, которая является обратной по отношению соответственно к функциям синус, косинус и т.д. В качестве основы введения указанных понятий используется так называемая теорема о корне. Указанная теорема применяется и для введения способа решения простейших тригонометрических уравнений. Это требует выделять в процессе получения формул, задающих множества их решений, несколько пунктов: 1) рассматривается промежуток, длина которого равна наименьшему положительному периоду функции, представленной в левой части уравнения и на котором определено понятие арксинуса, арккосинуса или арктангенса числа (в зависимости от предложенного уравнения); если эта функция – синус или косинус, то промежуток разбивается на два); 2) данное уравнение решается на каждом промежутке; основой решения служит теорема о корне, которая конкретизируется для соответствующей тригонометрической функции; 3) на основе свойства периодичности рассматриваемой тригонометрической функции делается вывод о том, что числа или (здесь — решение уравнения, принадлежащее выделенным промежуткам) являются решениями данного уравнения; этот вывод используется для получения формулы решений.

Рекомендуем предложить учащимся и другой способ получения формулы решений простейшего тригонометрического уравнения. Раскроем его суть, обратившись к решению уравнения ( и ).

Так как , то данное уравнение обязательно имеет решения, одно из которых принадлежит промежутку . Обозначим его . Тогда . С учетом принятых обозначений данное уравнение приводим к виду: . Преобразуем левую часть уравнения в произведение: ; это дает возможность заменить данное уравнение равносильной совокупностью простейших тригонометрических уравнений или . Используя свойство функций синус и косинус (множество корней), получаем: или . Теперь осталось выразить через (или ) и записать общую формулу для нахождения решений уравнения.

Предложим рекомендации, связанные с методикой организации деятельности учащихся на втором этапе обучения решению тригонометрических уравнений. При этом будем ориентироваться на использование второго способа получения общей формулы решений простейшего тригонометрического уравнения.

Во-первых, мотивировать целесообразность получения общего приема решения простейших тригонометрических уравнений можно, обратившись, например, к уравнениям , . Используя знания и умения, приобретенные на подготовительном этапе, учащиеся приведут предложенные уравнения к виду ; , но могут затрудниться в нахождении множества решений каждого из полученных уравнений. Указанных затруднений можно избежать, если обратиться к соответствующей иллюстрации (решение уравнения графически или с помощью тригонометрического круга), но и в этом случае остается открытым вопрос: нельзя ли получить общие формулы для записи множеств решений тригонометрических уравнений вида , ( и ), (), которые дадут возможность сразу фиксировать искомые множества.

Во-вторых, следует обратить внимание учащихся, что получение общих формул для записи множеств решений уравнений указанного вида предполагает введение понятий арксинуса, их арккосинуса числа и т.д. Ввести эти понятия должен учитель, демонстрируя школьникам применение теоремы о корне к каждой из тригонометрических функций на определенном множестве. При этом целесообразно обратиться к графическому способу решения задачи о нахождении множества решений уравнения вида , , на промежутках , и соответственно (решить такую задачу учащиеся могут самостоятельно).

В-третьих, следует провести работу по формированию у учащихся умений находить значения выражений вида , , при данных значениях . С этой целью полезно предложить учащимся задания типа

1) Вычислить: ;

2) Найти значение выражения: и т.п.

Учитель должен обратить внимание учащихся на способ выполнения каждого из заданий, дать соответствующий образец. В первом случае способ задается следующим предписанием: нужно найти такое действительное число , которое удовлетворяет двум условиям (укажем эти условия, имея в виду пример : это число принадлежит промежутку ; синус искомого числа равен , то есть и . Способ выполнения второго задания основан на применении понятий «арксинус числа», «арккосинус числа» и т.д. и, возможно, тригонометрических тождеств. Особое внимание следует обратить на выполнение последнего примера этого задания.

В-четвертых, целесообразно провести работу по актуализации у учащихся приемов преобразования суммы (разности) тригонометрических функций в произведение, обратить внимание школьников на роль этих приемов при решении тригонометрических уравнений. Организовать такую работу можно через самостоятельное выполнение учащимися предложенных учителем заданий, среди которых выделим следующие:

1)Разложить на множители: .

2)Решить уравнение: . Выполнение учащимися приведенных заданий следует заключить выводом о том приеме, который лежит в основе решения данных уравнений: привести уравнение к виду , разложить левую часть на множители, воспользоваться условием равенства нулю произведения и заменить уравнение равносильной совокупностью уравнений, каждое из уравнений совокупности решить, используя факт о множестве корней соответствующей тригонометрической функции.

В-пятых, начать работу по введению способа решения простейших тригонометрических уравнений следует с постановки вопроса: при каких значениях параметра уравнение вида (,,) имеет (не имеет) действительного решения и почему. Выделение множества решений параметра, при которых указанное уравнение разрешимо в , дает основание для поиска способа его решения. Заметим, что в практике обучения школьникам достаточно разъяснить суть такого способа для одного из уравнений, например, , . При этом нужно лишь обратить внимание учащихся на то, что если мы заменим число значением функции синус некоторого аргумента, то данное уравнение сводится к уравнению, способ решения которого уже известен. Поэтому, по сути, большая часть работы, связанной с получением формулы решений рассматриваемого уравнения, может быть выполнена учащимися самостоятельно. Учитель выступает в роли консультанта и помогает школьникам сделать обобщения. Получение формул, задающих множества решений уравнений , целесообразно представить учащимся для самостоятельной работы.

В-шестых, от учащихся не рекомендуется требовать обязательной иллюстрации решения каждого простейшего тригонометрического уравнения с помощью графика или тригонометрического круга. Но обратить внимание на ее целесообразность следует (в особенности на применение круга), так как в последующем при решении тригонометрических неравенств соответствующая иллюстрация служит очень удобным средством фиксации множества решений данного неравенства.

Последующее формирование у учащихся умений решать простейшие тригонометрические уравнения осуществляется в основном в процессе самостоятельного решения школьниками уравнений, среди которых – уравнения, приводящиеся к простейшим или их совокупностям после выполнения преобразований тригонометрических выражений. В список предлагаемых учащимся уравнений рекомендуем включить такие, которые сводятся к виду

и т.п.

Аналогичные задания могут служить средством контроля за сформированностью у учащихся умений решать простейшие тригонометрические уравнения.

В связи с реализацией третьего этапа процесса формирования у школьников умений решать тригонометрические уравнения сделаем лишь два замечания.

Во-первых, знакомство учащихся с приемами решения тригонометрических уравнений, не являющихся простейшими, целесообразно осуществлять по следующей схеме: обращение к конкретному тригонометрическому уравнению = типичному представителю определенного вида совместный поиск (учитель – учащиеся) приема решения самостоятельный перенос найденного приема на другие уравнения этого же вида обобщение-вывод о характеристиках уравнений рассматриваемого вида и общем приеме решения этих уравнений.

Во-вторых, чтобы, с одной стороны, систематизировать знания учащихся о приемах решения тригонометрических уравнений, а с другой, продемонстрировать достаточную «условность» отнесения ряда уравнений к определенному виду, рекомендуем специально показать школьникам возможность применения различных приемов решения к одному и тому же уравнению. Для этого целесообразно обратиться к «хорошему уравнению, установить все те приемы, которые могут быть реализованы в процессе его решения, акцентировать внимание учащихся на их особенностях, выделить прием, который в рассматриваемой ситуации оказывается наиболее рациональным.

В качестве такого «хорошего» уравнения можно предложить, например, следующее .

Это уравнение может быть приведено

1) к виду однородного относительно и

2) к квадратному относительно с помощью универсальной подстановки

;

3) к простейшему тригонометрическому вида

после применения приема введения вспомогательной переменной.

Сравнение приемов решения уравнения в каждом из указанных случаев свидетельствует, что наиболее рациональным является приведение данного уравнения к простейшему тригонометрическому, так как процесс решения состоит из наименьшего числа операций, выполнение каждой из этих операций не может нарушить равносильность исходного и полученного уравнений, запись ответа более компактна.

В заключение приведем примеры тригонометрических уравнений, которые рекомендуем предложить учащимся для самостоятельного решения:

1 группу составляют тригонометрические уравнения, способ решения которых основан на определениях и некоторых свойствах тригонометрических функций.

а) ; б) ; в) ; г)

2 группу составляют простейшие тригонометрические уравнения, способ решения которых основан на определениях тригонометрических функций и понятиях арксинуса, арккосинуса и арктангенса числа.

а) ; б) ; в) ;

г) ;

3 группа задач объединяет тригонометрические уравнения, решение которых потребует выполнения тождественных преобразований тригонометрических и алгебраических выражений для приведения данного уравнения к одному из известных видов.

а) ; б) ;

в) ; г) ;

д) .

2.3 Методика формирования умений решать тригонометрические неравенства

В процессе формирования у школьников умений решать тригонометрические неравенства, также можно выделить 3 этапа.

2. формирование умений решать простейшие тригонометрические неравенства;

3. введение тригонометрических неравенств других видов.

Цель подготовительного этапа состоит в том, что необходимо сформировать у школьников умения использовать тригонометрический круг или график для решения неравенств, а именно:

— умения решать простейшие неравенства вида sinx > 1, sinx 1, cosx 1, sinx 1, cosx 1, sinx 1, cosx 0

Справилось – 10 человек (52,6%);

Справилось – 15 человек (78,9%);

9. Решить неравенство

Справилось – 12 человек (63,2 %).

1. Ученики более внимательно работают с тригонометрической окружностью, более точно обозначают точки на окружности, определяют направление нужной дуги и приступают к решению неравенств после рассмотрения условий применимости свойств функции, необходимых для решения.

2. Сравнение результатов тестирования до и после эксперимента позволяет представить их в графической форме.

Работа с учащимися по формированию осознанного и качественного научения решать тригонометрические неравенства прошла успешно. Об этом свидетельствуют:

· Улучшение результатов проверочных работ

· Отношение самих учащихся к проведённым занятиям.

Школьники с интересом принимали участие в процессе обучения.

Таким образом, цель эксперимента достигнута. Его результаты удовлетворительны. Данная методика имеет возможность применения на занятиях по алгебре и началам анализа в общеобразовательной школе.

Проработав соответствующую психолого-педагогическую и методическую литературу по данному вопросу, очевидно, сделать вывод о том, что умение и навыки решать тригонометрических уравнения и неравенства в школьном курсе алгебры и начал анализа являются очень важными, развитие которых требует значительных усилий со стороны учителя математики.

Таким образом, учитель сам обязан в достаточной мере владеть методиками формирования умений и навыков решать тригонометрические уравнения и неравенства. С учётом того, что тригонометрические уравнения и неравенства разделяются на несколько типов, то соответственно и методика для каждого типа различна.

Бесспорно, достичь поставленной цели с помощью только средств и методов предложенными авторами современных учебников, практически невозможно. Это связано с индивидуальными особенностями учащихся. Ведь в зависимости от уровня их базовых знаний по тригонометрии выстраивается линия возможностей изучения различных видов уравнений и неравенств на разных уровнях.

С решением уравнений, в которых переменная входит под знак одной или нескольких тригонометрических функций, так или иначе связаны многие задачи тригонометрии, стереометрии, физики и др. Процесс решения таких задач как бы синтезирует в себе практически все знания и умения, которые учащиеся приобретают при изучении элементов тригонометрии. Поэтому учитель сталкивается с довольно сложной проблемой выделения тех идей изучаемого материала, которые лежат в основе способов решения рассматриваемых задач, с целью их последующего обобщения и систематизации. Это важно и для осознанного усвоения учащимися теории, и для овладения некоторыми достаточно общими способами решения математических задач. Следует также заметить, что решение тригонометрических уравнений не только создает предпосылки для систематизации знаний учащихся, связанных с материалом тригонометрии (например, свойства тригонометрических функций, приемы преобразования тригонометрических выражений и т.д.), но и дает возможность установить действенные связи с изученным алгебраическим материалом (уравнение, равносильность уравнений, виды алгебраических уравнений, способы их решения, приемы преобразования алгебраических выражений и т.п.). В этом состоит одна из особенностей материала, связанная с изучением тригонометрических уравнений.

Другая особенность – в исключительном разнообразии таких уравнений. Именно это разнообразие влечет определенные трудности в их классификации; его следствием могут быть и затруднения в решении тригонометрических уравнений, в частности, — в выборе того приема, который целесообразно применить для получения искомого множества значений переменной.

Указанные особенности должны быть учтены учителем при разработке методики обучения школьников решению тригонометрических уравнений.

Тригонометрические уравнения и неравенства занимают достойное место в процессе обучения математики и развитии личности в целом.

1. Аджиева А. Тригонометрические уравнения // Математика. Приложение к газете «Первое сентября» № 33, 2001г.

2. Адрова И.А., Ромашко И.В. Модульный урок в X классе по теме «Решение тригонометрических уравнений» //Математика в школе. 2001. №4. С. 28-32.

3. БашмаковМ.И. Алгебра и начала анализа. 10-11. Учебное пособие для 10 – 11 кл. средней школы. М. Просвещение, 1998. – 335 с.: ил.

4. Водинчар М.И. и др. Метод концентрических окружностей для систем тригонометрических неравенств //Математика в школе. 1999. № 4. С. 73-77.

5. Гилемханов Р.Г. Освободимся от лишней работы (при решении однородных триг.уравнений) //Математика в школе. 2000. № 10. С.9

6. Зайкин М.И. Развивающий потенциал математики и его реализация в обучении (сборник научных и методических работ, предоставленных на региональную научно-практичечскую конференцию).М.: Арзамас, 2002. — 334с.

7. Зандер В.К. О блочном изучении математики / на примере изучения темы «Решение тригонометрических уравнений и неравенств» //Математика в школе.1991. № 4, С.38-42.

8. Звавич В.И., Пигарев Б.П. Тригонометрические уравнения //Математика в школе. 1995. № 2. С.23-33

9. Звавич В.И., Пигарев Б.П. Тригонометрические уравнения (решение уравнений + варианты самостоятельных работ) //Математика в школе. № 3, С.18-27.

10. Золотухин Е.П. Замечания о решении уравнений вида asinx + bcosx = c //Математика в школе. 1991. № 3. С.84.

11. Калинин А.К. О решении тригонометрических неравенств. // Математика. Приложение к газете «Первое сентября» № 6, 1991г.

12. Кириченко Т.Ф. и др. Методические рекомендации для студентов-заочников по решению математических задач. Ленинград, 1987 – 53 с.

13. Клещев В.А. Обобщение метода интервалов на тригонометрической окружности //Математика в школе. 1992. № 6. С. 17-18.

14. Колмогоров А.Н. и др. Алгебра и начала анализа: Учебное пособие для 10 – 11 кл. средней школы. М. Просвещение, 1998. – 335 с.: ил.

15. Кордемский Б.А. Как увлечь математикой. М.:Просвещение, 1981. -112с.ил.

16. Е.И. Лященко и др. Методические рекомендации по формированию ведущих понятий курса математики. Ленинград, 1988. – 72 с.

17. Мирошин В . Отбор корней в тригонометрических уравнениях.// Математика. Приложение к газете «Первое сентября» № 17, 2006г.

18. Мордкович А.Г. Беседы с учителем. М.: ООО “Издательский дом “ОНИКС 21 век”:ООО “Издательство “Мир и Образование”, 2005”

19. Мордкович А.Г . Алгебра и начала анализа. 10-11 кл.: Учебник для общеобразовательных учреждений. – М.: Мнемозина, 2000. – 336с.:ил.

20. Мордкович А.Г. Методические проблемы изучения тригонометрии в общеобразовательной школе // Математика в школе. 2002. №6.

21. Немов Р.С. Психология: Учеб. для студ. высш. пед. учеб. заведений: В 3 кн–4-е изд. М.: Гумакнит. изд. центр ВЛАДОС, 2003.-Кн.1:Общие основы психологии.-688с.

22. Немов Р.С. Психология: Учеб.для студ.высш.пед.учеб.заведений: В 3 кн. – 4е изд. М.:Гумакнит.изд.центр ВЛАДОС, 2003.-Кн.2: Общие основы психологии.-608с.

23. Орлова Т. Решение однородных тригонометрических уравнений: Конкурс “Я иду на урок” //Математика. Приложение к газете «Первое сентября» № 48, 1999г.

24. Пичурин Л.Ф . О тригонометрии и не только о ней: М. Просвещение, 1985г.

25. Решетников Н.Н. Тригонометрия в школе: М. Педагогический университет «Первое сентября», 2006, лк 1.

26. Смоляков А.Н., Севрюков П.Ф. Приемы решения тригонометрических уравнений //Математика в школе. 2004. № 1. С. 24-26.

27. Суворова М.В. Повторительно-обобщающие уроки в курсе математики (на примере изучения темы «Тригонометрические уравнения» //Математика в школе. 1995. № 4. С.12-13

28. Токарева А. Тригонометрические неравенства. // Математика. // Приложение к газете «Первое сентября» № 44, 2002 г.

29. Шабунин М. Тригонометрические уравнения. // Математика. Приложение к газете «Первое сентября» № 12,13, 1995г.

30. Филатов В.Г. О потере корней при решении тригонометрических уравнений //Математика в школе. 1991. №2. С.57-59.

31. Шабашова О.В. Приемы отбора корней в тригонометрических уравнениях //Математика в школе. 2004. №1. С.20-24.

32. Якимовская И.С . Знания и мышление школьников. М.: Просвещение, 1976.

Исследовательская работа по теме «Тригонометрические уравнения. Способы выбора корней»

Школьный курс алгебры и начала анализа 10 — 11 классы . Исследовательская работа по теме «Тригонометрические уравнения. Способы выбора корней», выполненная ученицей 11 класса Толстых Владиславой под руководством учителя математики Исаковой Т.И. Работа может использована при подготовке к ЕГЭ

Скачать:

Название: Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Раздел: Рефераты по математике
Тип: дипломная работа Добавлен 14:06:28 11 мая 2010 Похожие работы
Просмотров: 7256 Комментариев: 21 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать
ВложениеРазмер
trigonometricheskie_uravneniya_sposoby_otbora_korney_22.03.17.doc630 КБ
trigonometricheskie_uravneniya_sposoby_otbora_korney.ppt799 КБ

Предварительный просмотр:

Региональная научно-практическая конференция

для молодежи и школьников «Шаг в будущее, Сибирь!»

Способы выбора корней

Толстых Владислава, ученица 11класса

Муниципальное казённое обще – образовательное учреждение Средне –Муйская средняя общеобразовательная школа Усть — Удинского района Иркутской области

Исакова Тамара Ивановна, учитель математики, высшей квалификационной категории. МКОУ Средне – Муйская СОШ Усть Удинского района Иркутской области

с. Средняя Муя, 2017год

Из истории происхождения

Типы тригонометрических уравнений

Способы отбора корней в тригонометрических уравнениях

Практические применения тригонометрии

Актуальность темы: Почему я выбрала тему «Тригонометрические уравнения»?

  • тригонометрические уравнения и неравенства встречаются в курсе алгебры и начала анализа, в разделе ЕГЭ по математике
  • тригонометрия встречается в таких науках, как физика, биологии
  • не последнюю роль играют и в медицине, и, что самое интересное, без них не обошлось даже в музыке и архитектуре.

Почему я выбрала тему «Тригонометрические уравнения»?

Тригонометрические уравнения – это одна из сложнейших тем математики, которая выходит на Единый Государственный Экзамен. Очень многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и выбирать корни, принадлежащие отрезку. Немаловажно знать, тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Каждого изучающего математику, интересует как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

  • узнать как можно больше применений науки тригонометрия в повседневной практике
  • изучить способы решения тригонометрических уравнений и способы выбора корней, принадлежащих промежутку
  • расширить знания о применении тригонометрических уравнений в разных сферах жизни человека
  • познакомиться с историей возникновения тригонометрических уравнений
  • научиться решать тригонометрические уравнения
  • уметь выбирать корни уравнения, принадлежащие промежутку
  • сделать подборку задач из ЕГЭ
  • поработать в Microsoft Word, Microsoft PowerPoint
  • получить опыт публичного выступления
  • ресурсы Интернет – сайтов, содержащих тригонометрические уравнения
  • изучила материал энциклопедий и справочников
  • просмотрела и выбрала задания из Демо — вариантов ЕГЭ разных лет по математике
  • изучила способы решения тригонометрических уравнений и выбор корней уравнения принадлежащих отрезку

Методы и приемы :

  • поиск информации в источниках, справочниках
  • работа с ресурсами Internet
  • обработка и анализ информации
  • умение работать в Microsoft PowerPoint и Microsoft Word

Гипотеза : Существует две гипотезы:

  • человек не сможет обойтись в жизни без тригонометрических уравнений
  • тригонометрические уравнения не нужны человеку в жизни.
  • я считаю, что в XXI веке все научные работы требующие исследования базируются на тригонометрических функциях, уравнениях. По этому знания о тригонометрических уравнениях нужны каждому. Решение тригонометрических уравнений встречается в ЕГЭ по математике

Выводы : Выполняя исследовательскую работу

  • не только рассмотрела все способы выбора корней тригонометрического уравнения принадлежащего отрезку, но и ликвидировала свои проблемы по данной теме. Для меня это очень важно при сдаче ЕГЭ по математике
  • выяснила какое значение имеют тригонометрические уравнения в жизни человека и как они работают в стране
  • доказала, что в современном мире прожить без знаний тригонометрический уравнений невозможно. Чтобы быть хорошим специалистом, уметь разбираться в большом потоке информации, необходимо знать тригонометрические уравнения.
  • изучение столь важной и интересной темы дает положительную мотивацию для самообразования.

1. Из истории происхождения

Слово тригонометрия составилось из двух греческих слов: τρίγονον (тригонон-треугольник) и и μετρειν (метрейн — измерять ) в буквальном переводе означает измерение треугольников .

Именно эта задача- измерение треугольников или, как принято теперь говорить, решение треугольников, т.е. определение всех сторон и углов треугольника по трем его известным элементам (стороне и двум углам, двум сторонам и углу или трем сторонам)- с древнейших времен составляла основу практических приложений тригонометрии.

Как и всякая другая наука, тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач. Первые этапы развития тригонометрии тесно связаны с развитием астрономии. Большое влияние на развитие астрономии и тесно связанной с ней тригонометрии оказали потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил. Значительную роль в развитии тригонометрии сыграла потребность в составлении географических карт и тесно связанная с этим необходимость правильного определения больших расстояний на земной поверхности.

Основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого астронома Гиппарха (середина II века до н.э.). Тригонометрия как наука, в современном смысле этого слова не было не только у Гиппарха, но и у других ученых древности, так как они еще не имели понятия о функциях углов и даже не ставили в общем виде вопроса о зависимости между углами и сторонами треугольника. Но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. При этом основным средством получения нужных результатов было умение вычислять длины круговых хорд на основании известных соотношений между сторонами правильных трех-, четырех-, пяти- и десятиугольника и радиусом описанного круга.

Гиппарх составил первые таблицы хорд, т.е. таблицы, выражающие длину хорды для различных центральных углов в круге постоянного радиуса. Это были, по существу, таблицы двойных синусов половины центрального угла. Впрочем, оригинальные таблицы Гиппарха (как и почти все им написанное) до нас не дошли, и мы можем составить себе о них представление главным образом по сочинению «Великое построение» или ( в арабском переводе) « Альмагест» знаменитого астронома Клавдия Птолемея , жившего в середине II века н.э.

Птолемей делил окружность на 360 градусов, а диаметр- на 120 частей. Он считал радиус равным 60 частям(60 ′′ ). Каждую из частей он делил на 60 ′ , каждую минуту на 60 ′′ , секунду на 60 терций (60 ′′′ ) и т.д., применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60 ° в виде 60 частей радиуса (60 ч ), а сторону вписанного квадрата или хорду в 90 ° приравнивал числу 84 ч 51 ′ 10 ″ .Хорду в 120 ° — сторону вписанного равностороннего треугольника- он выражал числом 103 ч 55 ′ 23 ″ и т.д. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда α ) 2 +(хорда | 180- α| ) 2 =(диаметру) 2 , что соответствует современной формуле sin 2 α +cos 2 α =1.

«Альмагест» содержит таблицу хорд через полградуса от 0 ° до 180 ° , которая с нашей современной точки зрения представляет таблицу синусов для углов от 0 ° до 90 ° через каждые четверть градуса.

В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея: «прямоугольник, построенный на диагоналях вписанного в круг четырехугольника, равен сумме прямоугольников, построенных на противолежащих сторонах» (произведение диагоналей равно сумме произведений противоположных сторон). Пользуясь этой теоремой, греки умели (с помощью теоремы Пифагора) по хордам двух углов вычислить хорду суммы (или хорду разности) этих углов или хорду половины данного угла, т.е. умели получать результаты, которые мы получаем теперь по формулам синуса суммы (или разности) двух углов или половины угла.

Новые шаги в развитии тригонометрии связаны с развитием математической культуры народов Индии, Средней Азии и Европы (V-XII) .

Важный шаг вперед в период с V по XII век был сделан индусами, которые в отличие от греков стали рассматривать и употреблять в вычислениях уже не целую хорду ММ ′ ( см. чертеж) соответствующего центрального угла, а только ее половину МР, т. е. то, что мы теперь называем линией синуса α — половины центрального угла.

Наряду с синусом индусы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. (термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90 ° . «Синус дополнения» или ( по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus).

Им были известны также соотношения cos α =sin(90 ° — α ) и sin 2 α +cos 2 α =r 2 , а также формулы для синуса суммы и разности двух углов.

Следующий этап в развитии тригонометрии связан со странами

Средней Азии, Ближнего Востока, Закавказья(VII-XV в.)

Развиваясь в тесной связи с астрономией и географией,- среднеазиатская математика имела ярко выраженный «вычислительный характер» и была направлена на разрешение прикладных задач измерительной геометрии и тригонометрии, причем тригонометрия сформировалась в особую математическую дисциплину в значительной мере именно в трудах среднеазиатских ученых. Из числа сделанных ими важнейших успехов следует в первую очередь отметить введение всех шести тригонометрических линий: синуса, косинуса, тангенса, котангенса, секанса и косеканса, из которых лишь первые две были известны грекам и индусам.

Решая задачу об определении высоты Солнца S по тени b вертикально стоящего шеста a (см чертеж), сирийский астроном ал-Баттани (Хв.)пришел к выводу, что острый угол ϕ в прямоугольном треугольнике определяется отношением одного катета к другому, и вычислил небольшую таблицу котангенсов через 1 ° . Точнее говоря, он вычислил длину тени b=a ⋅ =a ⋅ ctg ϕ шеста определенной длины (а=12) для ϕ =1 ° ,2 ° ,3 ° ……

Абу-ль-Вафа из Хоросана, живший в Х веке (940-998), составил аналогичную «таблицу тангенсов», т.е. вычислил длину тени b=a ⋅ =a ⋅ tg ϕ , отбрасываемой горизонтальным шестом определенной длины ( а=60) на вертикальную стену (см. чертеж).

Следует отметить, что сами термины «тангенс» (в буквальном переводе- «касающийся») и «котангенс» произошли из латинского языка и появились в Европе значительно позднее (XVI-XVIIвв.). Среднеазиатские же ученые называли соответствующие линии «тенями»: котангенс- «первой тенью», тангенс- «второй тенью».

Абу-ль-Вафа дал совершенно точное геометрическое определение линии тангенса в тригонометрическом круге и присоединил к линиям тангенса и котангенса линии секанса и косеканса. Он же выразил (словесно) алгебраические зависимости между всеми тригонометрическими функциями и, в частности, для случая, когда радиус круга равен единице. Этот чрезвычайно важный случай был рассмотрен европейскими учеными на 300 лет позднее. Наконец, Абу-ль-Вафа составил таблицу синусов через каждые 10 ′ .

В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси (1201-1274).

Впервые в европейской науке стройное изложение тригонометрии дано в книге «О треугольниках разных родов», написанной Иоганном Мюллером , более известным в математике под именем Региомонтана(1436-1476). Он обобщает в ней методы решения прямоугольных треугольников и дает таблицы синусов с точностью до 0,0000001. При этом замечательно то, что он полагал радиус круга равным 10 000 000 или 10 000, т.е. выразил значения тригонометрических функций в десятичных дробях, перейдя фактически от шестидесятиричной системы счисления к десятичной.

Английский ученый XIV века Брадвардин (1290-1349) первый в Европе ввел в тригонометрические вычисления котангенс под названием «прямой тени» и тангенс под названием «обратной тени».

На пороге XVIIв. В развитии тригонометрии намечается новое направление- аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. О свойствах периодичности тригонометрических функций знал еще Виет , первые математические исследования которого относились к тригонометрии.

Швейцарский математик Иоганн Бернулли (1642-1727) уже применял символы тригонометрических функций.

В первой половине XIXв. французский ученый Ж.Фурье доказал, что всякое периодическое движение может быть представлено в виде суммы простых гармонических колебаний.

Огромное значение в истории тригонометрии имело творчество знаменитого петербургского академика Леонарда Эйлера (1707-1783), он придал всей тригонометрии современный вид.

В своем труде «Введение в анализ» (1748 г.) Эйлер разработал тригонометрию как науку о тригонометрических функциях, дал ей аналитическое изложение, выведя всю совокупность тригонометрических формул из немногих основных формул.

Эйлеру принадлежит окончательное решение вопроса о знаках тригонометрических функций во всех четвертях круга, вывод формул приведения для общих случаев.

Введя в математику новые функции- тригонометрические, стало целесообразным поставить вопрос о разложении этих функций в бесконечный ряд. Оказывается, такие разложения возможны:

Эти ряды позволяют значительно облегчить составление таблиц тригонометрических величин и для нахождения их с любой степени точности.

Аналитическое построение теории тригонометрических функций, начатое Эйлером, было завершено в работах Н.И.Лобачевского, Гаусса, Коши, Фурье и других.

«Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций…Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».

В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть-учение о тригонометрических функциях -является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть- решение треугольников -рассматривается как глава геометрии.

II. Типы тригонометрических уравнений:

К определению тригонометрического уравнения различные авторы учебных пособий подходят по-разному. Мы назовем тригонометрическим уравнениям равенство тригонометрических выражений, содержащих неизвестное (переменную) только под знаком тригонометрических функций. Уравнения cos 3x=sin; tg(π/2 – 11x) – tg ((3/2)π-5x) = 0; sin 3x+sin 5x = sin 4x и т.д. суть тригонометрические уравнения. Уравнения sin x=(1/2)x; cos 2x = — (1/2)x + (1/3); tg x = x и т.д. не являются тригонометрическими, они относятся к типу трансцендентных уравнений и, как правило, решаются приближенно или графически. Может случиться так, что не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(x-6) cos 2x=x-6. Мы видим, что x-6 не содержится под знаком тригонометрических функций, однако оно решается аналогически: (x-6) × (2 cos 2x -1)=0, откуда x=6 или cos 2x = (1/2), x=±(π/6)+nπ, nϵZ. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. При решении тригонометрических уравнений мы будем пользоваться известными тригонометрическими формулами. Простейшими тригонометрическими уравнениями являются: sin x=′a и cos x=a, где ׀а׀≤1, tg x=a и ctg x=a, где aϵR. Для решения различных видов тригонометрических уравнений необходимо уметь решать простейшие тригонометрические уравнения. Перейдем к рассмотрению решения тригонометрических уравнений различных видов.

1 тип — простейшие тригонометрические уравнения:

а) уравнения вида sin x=a

Уравнение вида sin x=a может иметь решении только при ׀а׀≤1. Известно, что решение этого уравнения находят по обобщенной формуле: x=(-1) n arcsin a+ nπ(1), где nϵZ и (-π/2)≤ arcsin a≤( π/2).

Решение. (2/3)x=(-1) n arcsin(1/2)+nπ, (2/3)x=(-1) n ( π/6) +nπ, x=(-1) n (π/4) +(3/2)nπ, nϵZ.

Ответ: x=(-1) n (π/4) +(3/2)nπ, nϵZ.

Решение. (3π/√x)= (-1) n+1 arcsin (√3/2) +nπ, (3π/√x)= (-1) n+1 (π/3) +nπ, (3/√x)= (-1) n+1 (1/3)+π, √x=(3/(-1) n+1 (1/3)+π) или √x=(9/3n+(-1) n+1 ), x=(81/((-1) n+1 (1/3)+π) 2 ), nϵN. Ответ: x=(81/((-1) n+1 (1/3)+π) 2 ), nϵN.

б) Уравнение вида cos x=a

Уравнение вида cos x=a может иметь решении только при ׀а׀≤1. Известно, что решение этого уравнения находят по обобщенной формуле: x= ±arccos a+ 2nπ, где nϵZ и 0≤ arccos a≤ π

Полезно знать, что arccos (-a) = π- arccos a.

Решение. (5/6)x= ±arccos(√3/2)+ 2nπ, (5/6)x=±( π/6) +2nπ, x=±( π/5) +(12/5)nπ, nϵZ.

Ответ: x=±(π/5) +(12/5)nπ, nϵZ.

Решение. cos(3x-2)=(√2/2), 3x-2 = = ±arccos(√2/2)+ 2nπ, 3x-2=±( π/4) +2nπ, x=(2/3)±(π/5)+ (2/3)nπ, nϵZ. Ответ: x=(2/3)±(π/5)+ (2/3)nπ, nϵZ.

в) Уравнение вида tg x=a, aϵR

Известно, что решение данного уравнения находят по обобщенной формуле: x=arctg a+ nπ, где nϵZ. Полезно помнить, что arctg (-a)= — arctg a.

Решение. 2x=arctg √3+nπ, 2x=( π/3)+ nπ, 2x=(3n+1)( π/3),x=(3n+1)( π/6), nϵZ.

Ответ: x=(3n+1)( π/6), nϵZ.

Решение. (2/3x)= arctg(-1)+ nπ, (2/3x)= -arctg1+ nπ, (2/3x)= (-π/4)+ nπ, (2/3x)= (-π/4)+ nπ, (2/3x)= (4π—1)(π/4), (1/x)= (4π—1)(3π/8), x=(8/(4π—1)3π), nϵZ.

Ответ: x=(8/(4π—1)3π), nϵZ.

г) уравнение вида ctg x=a, aϵ R

Известно, что решение данного уравнения находят по обобщенной формуле: x=arcctg a+ nπ,(5), где nϵZ и 0

При решении простейших уравнений можно использовать тригонометрический круг. Я считаю, что данный способ более рациональный, чем решение тригонометрических уравнений с помощью формулы.

2 тип-уравнения, сводимые к алгебраическим

Это уравнения, сводимые к одной и той же функции относительно одного и того же неизвестного выражения, выходящего только под знак функции.

Тригонометрические уравнение a sin 2 x+ b sin x+c=0, a cos 3 x+ b cos x+c=0; a tg 4 3x+ b tg 2 3x+c=0, a ctg 2 2x+ b ctg 2x+c=0 уже сведены к алгебраическим. Действительно, положив в них соответственно sin x=y, cos x=z, tg 3x=t, ctg 2x= u, получим алгебраические уравнения: ay 2 + by+c=0, az 2 + bz+c=0, at 4 + bt 2 +c=0; au 2 + bu+c=0. Решив каждое из них, найдем sin x, cos x, tg 3x, ctg 2x.

Уравнения a sin 2 x+ b cos x+c=0, a cos 2 x+ b sin x+c=0, a tg x+ b ctg x =0 не являются по виду алгебраическими, но их можно свести к алгебраическим: a cos 2 x- b cos x-(a+c)=0, a sin 2 x- b sin x-(a+c)=0 и a tg x +(b/tg x)=0.

При решении уравнений сводимых к алгебраическим необходимо знать формулы:

1) sin x+cos x=1; 2)tg a =(sin a/cos a); 3) ctg a=( cos a/ sin a); 4) ctg a=(1/tg a)

5)1+tg 2 a=(1/cos 2 a); 6)1+ctg 2 a=(1/sin 2 a); 7) 1+cos 2a=2cos 2 a; 8) 1-cos 2a=2sin 2 a;

9)tg2a=(2 tga/1-tg 2 a); 10) sin2a=(2 tga/1+tg 2 a); 11)cos 2a=(1-tg 2 a/1+tg 2 a);

12)sin2a=2sin a cos a; 13) cos2a= cos 2 a-sin 2 a, или cos2a= 2cos 2 a-1, или cos2a= 1-2sin 2 a;

14) Формулы приведения;

  1. Ведём замену а.
  2. Находим корни квадратного уравнения.
  3. Возвращаемся к замене и решаем простейшее тригонометрическое уравнение.
  4. Записываем ответ.

Пример1: Решить уравнение2 sin 2 x + sin x – 1 = 0;

2 sin 2 x + sin x – 1 = 0;

sin x = а, ׀ а ׀ ≤ 1;

D = 9; а 1 = — 1; а 2 = 1 / 2 ;

sin x = -1; sin x = 1 / 2 ;

х 1 = — п / 2 + 2пn, n € N. x 2 = (- 1) k п / 6 + пk, k€ N.

Ответ: — п / 2 + 2пn; (- 1) k п / 6 + пk, n, k € N.

Приме 2: Решить уравнение

3 тип-однородные уравнения

Уравнения a sin x+ b cos x=0; a sin 2 x+b sin x cos x+c cos 2 x=0; a sin 3 x+b sin 2 x cos x+ c sin x cos 2 x+ d cos 3 x=0 и т.д. называют однородными относительно sin x и cos x. Сумма показателей степеней при sin x и cos x у всех членов такого уравнения одинакова. Эта сумма называется степенью однородного уравнения. Рассмотренные уравнения имеют соответственно первую, вторую и третью степень. Делением на cos k x, где k-степень однородного уравнения, уравнение приводится к алгебраическому относительно функции tg x.

Рассмотрим уравнение a sin 2 x+b sin x cos x+c cos 2 x=0(1). Разделим уравнение(1) на cos 2 x, получим: a tg 2 x+ b tg x+c=0(2).При a≠0 (1) и (2) равносильны, так как cos x≠0. Если же cos x=0, то из уравнения(1) видно, что и sin x =0, что невозможно, так как теряет смысл тождество .

При решении однородных уравнений применяем схему:

  1. Разделим обе части уравнения на cos 2 x ≠ 0.
  2. Ведём замену а.
  3. Находим корни квадратного уравнения.
  4. Возвращаемся к замене и решаем простейшее тригонометрическое уравнение.
  5. Записываем ответ.

Пример1. Решить уравнение: 3 sin2 x + sin x • cos x = 2 cos2 x;

3 sin 2 x + sin x · cos x = 2 cos 2 x;

3 tq 2 x + tq x = 2; х ≠ п / 2 + пn, n € N.

D = 25; а 1 = — 1; а 2 = 2 / 3 ;

tq x = — 1; tq x = 2 / 3 ;

х 1 = — п / 4 + пn, n € N. x 2 = arctq 2 / 3 + пn, n € N.

Ответ: — п / 4 + пn, arctq 2 / 3 + пn, n € N.

Пример 2. 5 sin x — 2 cos x = 0

Поделим обе части уравнения cos x (или на sin x). Предварительно докажем,

что cos x 0 (или sin x 0). (Пусть cos x = 0, тогда 5 sin x — 2 • 0 = 0, т.е. sin x = 0; но этого не может быть, так как sin 2 x + cos 2 x = 1).

Значит, можно делить на cos x:

5 sin x /cos x — 2 cos x / cos x = 0 / cos x. Получим уравнение

x = arctg 2/5 + n, n = Z.

Ответ: x = arctg 2/5 + n, n = Z.

Аналогично решаются однородные уравнения вида a sin 2 x + b sin x cos x + c cos 2 x = 0, их решение начинается с того, что обе части уравнения делятся на cos 2 x (или на sin 2 x).

Пример 3. 12 sin 2 x + 3 sin 2x — 2 cos 2 x = 2.

Данное уравнение не является однородным, но его можно преобразовать в однородное, заменив 3 sin 2x на 6 sin x cos x и число 2 на 2sin 2 x + 2cos 2 x.

Приведя подобные члены, получим уравнение

10sin 2 x + 6sin x cos x — 4 cos 2 x = 0.

(Пусть cos x = 0, тогда 10sin 2 x = 0, чего не может быть, т.к. sin 2 x + cos 2 x = 1, значит, cos x 0).

Разделим обе части уравнения на cos 2 x.

10 tg 2 x +6 tg x — 4 = 0,

tg x = -1 или tg x = 2/5,

x = — /4 + n, n = Z, x = arctg 2/5 + k, k = Z.

Ответ: x 1 = — /4 + n, n = Z, x 2 = arctg 2/5 + k, k = Z.

4 тип- уравнения, решаемые разложением на множители:

При решении уравнений методом разложения нужно пользоваться всеми известными способами разложения на множители алгебраических выражений. Это вынесение за скобки общего множителя, группировка, применение формул сокращенного умножения и деления и искусственные приемы. Необходимо так же знать формулы: 1) sin x+cos x=1; 2)tg a =(sin a/cos a); 3) ctg a=( cos a/ sin a); 4) ctg a=(1/tg a)

5)1+tg 2 a=(1/cos 2 a); 6)1+ctg 2 a=(1/sin 2 a); 7) 1+cos 2a=2cos 2 a; 8) 1-cos 2a=2sin 2 a;

9)tg2a=(2 tga/1-tg 2 a); 10) sin2a=(2 tga/1+tg 2 a); 11)cos 2a=(1-tg 2 a/1+tg 2 a);

12)sin2a=2sin a cos a; 13) cos2a= cos 2 a-sin 2 a, или cos2a= 2cos 2 a-1, или cos2a= 1-2sin 2 a;

14)tg(a±b) = (tg a±tg b)/(1±tg a tg b); 15)sin 3a=3sin a – 4sin 3 a; 16)cos 3 a = 4 cos 3 a – 3 cos a;

Пример2. 2 sin 3 x — cos 2x — sin x = 0

Сгруппируем первый член с третьим, а cos 2x = cos 2 x — sin 2 x.

(2sin 3 x — sin x) – (cos 2 x — sin x) = 0,

Вынесем из выражения, стоящего в первой скобке sin x, а cos 2 x = 1 — sin x.

sin x (2sin 2 x – 1) – (1 — 2 sin 2 x) = 0,

sin x (2sin 2 x – 1) + (2 sin 2 x — 1) = 0,

(2 sin 2 x — 1) • ( sin x + 1) = 0.

2 sin 2 x – 1 = 0

Ответ: x 1 = ± /4 + n, n = Z, x 2 = — /2 +2 k, k = Z.

5 тип-уравнения, решаемые с помощью условия равенства одноименных тригонометрических функций

Многие тригонометрические уравнения могут быть приведены к равенству одноименных тригонометрических функций. Такие уравнения решаются на основании условий равенства одноименных тригонометрических функций, т.е. тех условий, которым должны удовлетворять два угла: a и b, если a) sin a =sin b, б) cos a= cos b, в) tg a = tg b.

Теорема I. Для того чтобы синусы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: разность этих углов должна равняться π, умноженному на четное число, или сумма этих углов должна равняться π, умноженная на нечетное число,

Теорема II . Для того чтобы косинусы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: разность(сумма) этих углов должна равняться произведению π на четное число.

Теорема II . Для того чтобы тангенсы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: тангенс каждого из данных углов существует и разность этих углов равна числу π, умноженному на целое число.

6 тип- уравнения, решаемые с помощью формул сложения тригонометрических функций:

Для решения данного типа применяются формулы преобразования суммы тригонометрических функций в произведение:

Sin a + sin b= 2 sin((a+b)/2) cos((a-b)/2);

Sin a — sin b= 2 sin((a-b)/2) cos((a+b)/2);

cos a + cos b= 2 cos ((a+b)/2) cos((a-b)/2);

cos a — cos b= 2 sin ((a+b)/2) sin ((b-a)/2) при b>a;

cos a — cos b= 2 sin ((a+b)/2) sin ((a-b)/2) при b

tg a ± tg b = (sin(a+b)/ cos a cos b);

ctg a + ctg b = (sin(a+b)/ sin a sin b);

ctg a — ctg b = (sin(b-a)/ sin a sin b);

В некоторых примерах прийдется применять формулы:

sin (a±b)= sin a cos b± cos a sin b;

cos (a±b)= cos a cos b± sin a sin b;

7 тип- уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму

Формулы сложения углов и разложения произведения тригонометрических функций в сумму:

sin (a±b)= sin a cos b± cos a sin b;

cos (a±b)= cos a cos b± sin a sin b;

tg(a±b) = (tg a±tg b)/(1±tg a tg b);

sin a cos b=(1/2)(sin(a+b)+ sin(a-b));

cos a cos b=(1/2)( cos (a+b)+ cos (a-b));

sin a sin b=(1/2)( cos (a-b)- cos (a+b));

8 тип-уравнения, решаемые с помощью формул понижения степени

Формулы понижения степени:

Sin 2 t=((1- cos 2t)/2)

Cos 2 t=((1+cos 2t)/2)

9 тип- уравнения вида a sin x+b cos x= c

В уравнении a sin x+b cos x= c a, b и c- любые действительные числа. Если а=b=0, а с≠0, то уравнение теряет слысл; если же а=b=с=0, то x- любое действительное число, т.е. уравнение обращается в тождество. Например, √3 sin x + cos x=1. Разделив обе части уравнения на 2, получим (√3/2) sin x + (1/2)cos x=(1/2), т.е. sin(x+(π/6))=1/2 или cos(x-(π/6))= 1/2. Уравнение sin x+ cos x=1 можно решать по крайней мере четырьмя способами. Например, разделив обе части уравнения на √2, получив: (1/√2) sin x+(1/√2) cos x= (1/√2), sin(x+(π/4))= (2/√2) и т.д.

Рассмотрим уравнение a sin x+b cos x= c, у которого произвольные коэффициенты. Такие уравнения решаются разными способами.

1-й способ решения уравнения a sin x+b cos x= c – введение вспомогательного угла.

Мы знаем, что если a 2 +b 2 =1, то существует такой угол как φ, а= cos φ, b= sin φ или наоборот. Для решения уравнения a sin x+b cos x= c вынесем за скобки множителем выражение √( a 2 +b 2 ). Получим: √( a 2 +b 2 )((a/√( a 2 +b 2 )) sin x+(b/√( a 2 +b 2 )) cos x)=c. Поскольку (((a/√( a 2 +b 2 )) sin x) 2 +((b/√( a 2 +b 2 )) cos x)) 2 =1, то первое число (a/√( a 2 +b 2 )) можно принять за косинус некоторого угла φ, а второе (b/√( a 2 +b 2 )) — за синус того же угла φ, т.е. (a/√( a 2 +b 2 ))= cos φ, (b/√( a 2 +b 2 )) = sin φ. В таком случае уравнение примет вид: √( a 2 +b 2 )( cos φ sin x+ sin φ cos x)= c или √( a 2 +b 2 ) sin(φ+x), откуда sin(φ+x)= (с/√( a 2 +b 2 )). Это уравнение имеет решение, если a 2 +b 2 =с 2 , тогда φ+x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ, x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ- φ, nϵZ. Угол φ находится из равенства tg φ =( sin φ/ cos φ) =(b/a), откуда φ=arctg(b/a). Ответ: x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ- arctg(b/a), nϵZ.

Пример: Решим уравнение 12cosx — 5sinx = -13

Решение: разделим обе части уравнения на , получим

Одним из решений системы cos = 12/13, sin = 5/13 является =arccos(12/13). Учитывая это, запишем уравнение в виде:
и, применив формулу для косинуса суммы аргументов, получим

2-й способ решения уравнения a sin x+b cos x= c – метод рационализации.

Известно, что если α≠π(2n+1), nϵZ, то sin α, cos α, tg α выражаются рационально через tg(α/2), т.е. sin α=( 2tg(α/2)/1+ tg 2 (α/2)), cos α=(1- tg 2 (α/2)/ 1+ tg 2 (α/2)), и tg α=( 2tg(α/2)/1- tg 2 (α/2)).

Метод рационализации заключается в следующем: вводится вспомогательное неизвестное так, чтобы после подстановки получилось рациональное уравнение относительно этого вспомогательного неизвестного. Рассмотрим уравнение a sin x+b cos x= c, которое можно переписать так: a( 2tg(α/2)/1+ tg 2 (α/2))+b(1- tg 2 (α/2)/ 1+ tg 2 (α/2))=c. Положим tg(x/2)=t, тогда получим: a( 2t/1+ t 2 )+b(1- t 2 / 1+ t 2 )=c. Это уравнение – рациональное относительно t. Умножим обе части уравнения на 1+ t 2 ≠0 при tϵR, получим: (b+c)t 2 -2at+(c-b)=0(2), (D/4)=a 2 -(c-b)(c+b)= a 2 +b 2 -с 2 . Полагаем, что a+b≠0 или с≠-b, тогда t 1.2 =((a±√( a 2 +b 2 -с 2 )/(b+c))(3). Значение t- действительные, если a 2 +b 2 ≥с 2 .

Если уравнение(2) с=-b, то оно обратится в уравнение первой степени: -2at-2b=0, t=-(b/a), т.е. tg(x/2)=- (b/a), x=-2 arctg(b/a)+2nπ. Выражение для вспомогательного неизвестного t= tg(x/2) теряет смысл при (x/2)= (π/2)+nπ, т.е. x=(2n+1)π. Решения уравнения(1) вида x=(2n+1)π (если такие решения существуют) могут быть потеряны. Подставив x=(2n+1)π в уравнение (1), получим a sin(2n+1)π +b cos(2n+1)π = c; a·0+b(-1)=c; с=-b. Том случае уравнение (1) имеет множество решений вида x=(2n+1)π, nϵZ.

  1. Если a 2 +b 2 2 , то уравнение (1) не имеет решений, так как уравнение (2) не имеет действительных корней.
  2. Если a 2 +b 2 ≥с 2 и с≠-b, то из уравнения(3) найдем: x=2arctg ((a±√( a 2 +b 2 -с 2 )/(b+c))+2nπ, nϵZ.
  3. Если с=-b, то уравнение (1) имеет два множества решений: x=(2n+1)π и x=-2 arctg++2nπ, nϵZ.

3-й способ решения уравнения a sin x+b cos x= c.

Можно возвести обе части уравнения в квадрат и привести его к однородному. Этот способ неприемлем, так как получаются посторонние корни.

4-й способ решения уравнения a sin x+b cos x= c.

  1. Запишем уравнение в виде: 2a sin(x/2) cos(x/2)+ b(cos 2 (x/2)- sin 2 (x/2))= c(cos 2 (x/2)+ sin 2 (x/2)), т.е. однородное уравнение:(с+b) sin 2 (x/2)- 2a sin(x/2) cos(x/2)+(c-b) cos 2 (x/2)=0 и т.

Универсальная тригонометрическая подстановка
Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

Пример. Решим уравнение

Решение:
Обращение к функции предполагает, что , то есть , .

По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

|: 2

, ;

IV. Способы отбора корней в тригонометрических уравнениях

1 способ: Арифметический(непосредственная подстановка корней в уравнение и имеющиеся ограничения)

2 способ. Геометрический способ(отбор корней тригонометрического уравнения на числовой прямой )

Отмечаю значения х при n,k,m=0 на числовой прямой и отрезок[-(3π/2); (π/2)]

Измеряю период 2 π с помощью линейки(период функции, входящей в уравнение) и откладываю период с помощью линейки вправо, влево.

Определяю значения углов, принадлежащих данному отрезку.

3 способ: Геометрический способ(отбор корней тригонометрического уравнения на числовой окружности)

Выбор корней уравнения 2 sin2x+ sinx-1=0, принадлежащих отрезку[π/2; 2π] покажу на тригонометрическом круге

4 способ: Функционально-графический способ

В одной системе координат строим графики функции у=sin x и у=-1; у=sin x и у=1/2. Показываем отрезок [-3п/2;п/2]. Находим точки пересечения графиков функций у=sin x и у=-1; у=sin x и у=1/2, входящих в промежутке [-3п/2;п/2].

х= -7п/6; х= -п/2; х=п/6 являются решением уравнения

5 способ: Алгебраический (решение неравенства относительно неизвестного целочисленного параметра и вычисления корней)

Считаю лучшим способом — это алгебраический (решение неравенства относительно неизвестного целочисленного параметра и вычисления корней)

  1. Практическое применение тригонометрии

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Приведу несколько примеров из практики, например: тригонометрия в медицине и биологии.

Модель биоритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем — на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах. Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея «измерения углов» не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Выполняя исследовательскую работу, выяснила какое значение имеют тригонометрические уравнения в жизни человека и как они работают в стране. Рассмотрела способы выбора корней уравнения принадлежащих отрезку из раздела «ЕГЭ по математике» Доказала, что в современном мире прожить без знаний тригонометрический уравнений невозможно. Чтобы быть хорошими специалистами, уметь разбираться в большом потоке информации, необходимо знать тригонометрические уравнения. Изучение столь важной и интересной темы дает положительную мотивацию для самообразования


источники:

http://www.bestreferat.ru/referat-200101.html

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2017/11/28/issledovatelskaya-rabota-po-teme