Качественная реакция на кетоны уравнение

Альдегиды и кетоны

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Строение карбонильных соединений

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует три σ-связи и одну π-связь.

Одна из σ–связей – связь С–О, все три σ–связи расположены в одной плоскости под углом 120 о друг к другу.

π-Связь образована р-электронами атомов углерода и кислорода.

Из-за большей электроотрицательности атома кислорода по сравнению с атомом углерода связь С=О сильно поляризована, электронная плотность смещена к более электроотрицательному атому кислорода.

На атоме кислорода возникает частичный отрицательный (δ – ), а на атоме углерода – частичный положительный (δ + ) заряды.

Номенклатура карбонильных соединений

  • По систематической номенклатуре к названию углеводорода добавляют суффикс «-АЛЬ».

Нумерация ведется от атома углерода карбонильной группы.

Например, 2-метилпропаналь

  • К названию кетонов добавляют в название суффикс «-ОН». После этого добавляют номер атомов углерода карбонильной группы.
Например, пентанон-2

  • Тривиальные названия альдегидов и кетонов приведены в таблице.

Изомерия карбонильных соединений

Изомерия альдегидов

Для альдегидов характерна структурная изомерия – изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомерия углеродного скелета характерна для альдегидов, которые содержат не менее четырех атомов углерода.

Например. Ф ормуле С4Н8О соответствуют два альдегида-изомера углеродного скелета
Бутаналь2-Метилпропаналь

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Альдегиды являются межклассовыми изомерами с кетонами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для альдегидов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
ПропанальАцетон (пропанон)

Изомерия кетонов

Для кетонов характерна изомерия углеродного скелета, изомерия положения карбонильной группы и межклассовая изомерия.

Изомерия углеродного скелета характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют кетоны-изомеры углеродного скелета
Пентанон-23-Метилбутанон-2

Изомерия положения карбонильной группы характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют два кетона-изомера углеродного скелета
Пентанон-2Пентанон-3

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Кетоны являются межклассовыми изомерами с альдегидами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для кетонов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
ПропанальАцетон (пропанон)

Физические свойства альдегидов и кетонов

Все альдегиды и кетоны, кроме формальдегида – жидкости. Лёгкие альдегиды хорошо растворимы в воде из-за водородных связей, которые они образуют с водой.

Химические свойства альдегидов и кетонов

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Получение карбонильных соединений

1. Окисление спиртов

При окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов – кетоны.

1.1. Окисление спиртов оксидом меди (II)

Например, при окислении этанола оксидом меди образуется уксусный альдегид

Например, при окислении изопропанола оксидом меди образуется ацетон

1.2. Окисление спиртов кислородом на меди

При пропускании паров спирта с кислородом над медной сеткой образуются альдегиды и кетоны.

Например, при окислении пропанола-1 кислородом в присутствии меди образуется пропаналь

В промышленности формальдегид получают окислением метанола на серебряном катализаторе при температуре 650 о С и атмосферном давлении:

1.3. Окисление спиртов сильными окислителями

Вторичные спирты при этом окисляются до кетонов. Первичные спирты можно окислить до альдегидов, если предотвратить дальнейшее окисление альдегида (например, отгонять образующийся альдегид в ходе реакции).

2. Дегидрирование спиртов

При пропускании спирта над медной сеткой при нагревании образуются карбонильные соединения.

Например, при дегидрировании этанола образуется этаналь

3. Гидратация алкинов

Присоединение воды к алкинам в присутствии солей ртути (II) приводит к образованию карбонильных соединений.

Например, при гидратации ацетилена образуется уксусный альдегид

Например: при гидратации пропина образуется ацетон

4. Гидролиз дигалогенпроизводных алканов

Под действием водного раствора щелочи образуется неустойчивый диол с двумя ОН-группами при одном атоме С, он теряет воду, превращаясь в альдегид или кетон.

Например: при гидролизе 1,1-дихлорэтана образуется этаналь

5. Пиролиз солей карбоновых кислот

При нагревании солей карбоновых кислот и двухвалентных металлов образуются неорганические соли (карбонаты) и кетоны.

Например: п ри пиролизе ацетата кальция образуется ацетон и карбонат кальция:

6. Кумольный способ получения ацетона

Ацетон в промышленности получают каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Суммарное уравнение реакции:

7. Каталитическое окисление алкенов

При окислении этилена кислородом в присутствии катализаторов образуется уксусный альдегид.

Качественная реакция на альдегиды и кетоны

Альдегиды и кетоны: химические свойства

1. Гидратация алкинов (реакция Кучерова) (см. тему “Алкины”)

2. Окисление и дегидрирование первичных и вторичных спиртов (см. тему “Спирты”)

3. Пиролиз (декарбоксилирование) солей карбоновых кислот

Атомы углерода и кислорода в карбонильной группе находятся в sp2-гибридизации, группа имеет плоское строение.

Связь СО поляризована, электронная плотность смещена к атому кислорода.

Дефицит электронной плотности на атоме углерода карбонила (+d’) в кетонах меньше, чем в альдегидах (+d) из-за донорных эффектов двух алкильных групп. Следствием этого является снижение реакционной способности карбонильной группы в кетонах.

I. Реакции присоединения по карбонильной группе

1. Восстановление (гидрирование) – синтезпервичных и вторичных спиртов.

При восстановлении или гидрировании альдегидов получают первичные спирты, из кетонов образуются вторичные спирты.

б) восстановление боргидридом натрия (NaBH 4 ) и алюмогидридом лития (LiAlH 4 )

2. Присоединение HCN – образование циангидринов или нитрилов 2-оксикислот.

Реакция носит название циангидринного синтеза и используется при получении 2-окси- и 2-аминокислот (см. материалы 2-го семестра).

Механизм AdNu –нуклеофильное присоединение по карбонильной группе

Nu – −:С≡N (нитрил-анион)

В качестве реагента также можно использовать КСN в присутствии воды.

2. Присоединение NaHSO 3 (гидросульфита натрия) – образование бисульфитного производного (качественная реакция )

Механизм AdNu, Nu –атом серы за счет НПЭ:

Пространственно затрудненные (разветвленные) кетоны, например диизопропилкетон, не образуют бисульфитные производные.

Реакция может служить качественной, бисульфитные производные легко кристаллизуются. Эту реакцию также используют для выделения альдегидов (кетонов) из смеси с другими соединениями.

4. Присоединение реактивов Гриньяра – синтез спиртов всех типов.

а) из формальдегида получают первичные спирты

б) из других альдегидов получают вторичные спирты

в) из кетонов получают третичные спирты

Присоединение слабых нуклеофилов

Для присоединения слабых нуклеофилов необходим кислый катализ.

  1. Присоединение H 2 O , НХ Х=Cl, Br

Реакции с этими реагентами обратимы, продукты присоединения (аддукты) нестабильны.

Исключением являются аддукты воды и альдегидов (кетонов), имеющих акцепторные группы.

2. Присоединение спиртов – образование полуацеталей (полукеталей), ацеталей (кеталей).

Присоединение одной молекулы спирта к альдегиду приводит к синтезу полуацеталей, к кетону – полукеталей. При дальнейшем взаимодействии со второй молекулой спирта из полуцеталя образуется ацеталь, из полукеталя – кеталь. Полуацетали и полукетали содержат при одном атоме углерода гидроксильную и алкоксигруппы, у ацеталей и кеталей – при одном атоме углерода две алкоксигруппы.

Механизм образования полуацеталя и ацеталя приведен ниже:

II. Реакции присоединения-отщепления (реакции с азотистыми нуклеофилами).

Реакции с соединениями с общей формулой NH2 -X, где Х = H, OH, NH2, NH-C6 H5, NH-C(O)NH2, NH-C6 H3 (о, п-NO2 ) идут в два этапа, промежуточные аддукты нестабильны.

Общая схема реакции:

1.Реакция с аммиаком – образование иминов.

Альдимины нестойки и вступают в реакции циклизации:

При взаимодействии 6 молей формальдегида и 4 молей аммиака образуется уротропин (гексаметилентетрамин), впервые синтезированный А. М. Бутлеровым в 1859 году. Уротропин используется для лечения мочевыводящих путей, его комплекс с хлористым кальцием называется кальцексом и применятся в качестве антигриппозного средства.

2. Реакция с гидроксиламином — NH 2 OH – образование оксимов.

Реакция относится к качественным. Оксимы – кристаллические вещества, легко кристаллизуются.

3. Реакции с гидразином – NH 2 — NH 2, фенилгидразином — NH 2 — NH — C 6 H 5 и с 2,4-динитрофенилгидразином — NH 2 — NH — C 6 H 3 -2,4-(NO 2 )2 – образование гидразонов, фенилгидразонов и 2,4-динитрофенилгидразонов.

По аналогичной схеме образуются фенилгидразоны и 2,4-динитрофенилгидразоны:

2,4-Динитрофенилгидразоны особенно широко используются для идентификации альдегидов и кетонов.

Они обладают высокими температурами плавления, легко кристаллизуются, имеют четкие спектральные данные.

3. Реакция с семикарбазидом – NH 2 — NH — CONH 2 – образование семикарбазонов.

Все выше описанные реакции катализируются слабыми кислотами, в случае реакции с 2,4-динитрофенилгидразином реакция идет в присутствии концентрированной серной кислоты.

Механизм однотипен – нуклеофильное присоединение-отщепление и описан ниже в общем виде:

Х=H, OH, NH2, NH-C6 H5, NH-C(O)NH2

Получаемые имино-производные при кислом или щелочном гидролизе дают исходные альдегиды (кетоны).

III. Реакции с участием атомов водорода при a -углеродном атоме

Для альдегидов и кетонов, имеющих атомы водорода в a-положение характерно явление таутомерии.

Таутомерия – это процесс динамической изомеризации. Структурные изомеры (в данном случае таутомеры), взаимно превращаясь, находятся в состоянии динамического равновесия.

Как правило, при изомеризации происходит перенос протона, в этом случае таутомерию называют прототропной.

При наличии двух a-положений в кетонах возможно образование двух енолов.

Альдегиды и кетоны образуются через енолы при гидратации алкинов по реакции Кучерова (см. тему «Алкины»). Енолы или енолят-анионы являются промежуточными соединениями в реакциях галоидирования и конденсации карбонильных соединений.

1. Галоидирование карбонильных соединений (идет только по α-положению).

Хлорирование хлором идет без катализатора, результат зависит от количества хлора, можно получить моно, ди и трихлорпроизводные (для этаналя).

Хлорирование идет легко и без катализатора, в зависимости от количества реагента и строения соединения можно ввести от одного до трех атомов хлора.

При бромировании используют 1 моль реагента в присутствии щелочи.

в) Галоформное расщепление (изб. I 2, Cl 2 или Br 2, Na ОН (конц.))

Качественная реакция на наличие ацетильного фрагмента (СН3 СО) в карбонильных соединениях.

При реакции с йодом и бромом выпадает окрашенный осадок галоформа, обладающий специфическим запахом.

Галоформному расщеплению подвергаются ацетальдегид и метилалкилкетоны, при этом кроме галоформа в реакции образуются натриевые соли карбоновых кислот.

2. Реакции альдольной и кротоновой конденсации

Конденсация – это реакция, приводящая к усложнению углеводородного скелета.

В альдольной и кротоновой конденсациях участвуют две молекулы карбонильного соединения. Одна молекула – карбонильная компонента, реагирует с помощью карбонильной группы, другая – метиленовая компонента за счет атомов водорода α-положения.

а) Альдольная конденсация (реакция катализируется основаниями)

Альдоли способны при нагревании в щелочной среде отщеплять воду и превращаться в a,b — непредельные альдегиды (кетоны).

б) Кротоновая конденсация (в кислой среде при нагревании).

Протекает по механизму АdE.

В кислой среде при нагревании конденсация не останавливается на стадии образования альдоля. Происходит внутримолекулярная дегидратация альдоля до непредельного альдегида или кетона.

При участии в реакции пропаналя, бутаналя и других альдегидов получают альдегиды и кетоны, имеющие в положении С-2 алкильную группу.

1. Альдегиды окисляются в мягких условиях до карбоновых кислот, проявляя свойства восстановителей.

Реакции с растворами Толенса (реакция серебряного зеркала) и Фелинга относятся к качественным.

2. Кетоны окисляются деструктивно с расщеплением молекулы в жестких условиях после енолизации под действием KMnO4 и K2 Cr2 O7 в присутствии концентрированной серной кислоты (реакцию не описываем).

1. Окисление спиртов. Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

При окислении вторичных спиртов образуются кетоны:

Гидратация алкинов (реакция Кучерова). Присоединение воды к ацетилену в присутствии солей ртути (II) приводит к образованию ацетальдегида:

Кетоны получают при гидратации других гомологов ацетилена:

Окисление алкенов (катализаторы — хлориды Pd и Cu):

4. Кумольный способ получения ацетона и фенола (Кружалов, Сергеев, Немцов):

5. Реакция оксосинтеза:

Восстановление хлорангидридов карбоновых кислот:

Карбонильные соединения являются промежуточными продуктами окисления углеводородов до кислот.

Получение альдегидов и кетонов

Химические свойства альдегидов и кетонов. Электронная структура карбонильной группы определяет реакционную способность альдегидов и кетонов. Атом углерода карбонильной группы находится в состоянии sp2-гибридизации.

Валентный угол между δ- связями 1200. Неспаренный р- электрон углерода перекрывается с р- электроном кислорода и образует π- связь, которая располагается перпендикулярно плоскости молекулы альдегида.

Электронная плотность π- связи смещена к кислороду. Исходя из этого, типичными реакциями альдегидов и кетонов являются:

─ реакции нуклеофильного замещения (AdN);

─ реакции с участием атомов водорода в α- положении в карбонильной группе.

Реакции нуклеофильного присоединения.Реакции нуклеофильного присоединения протекают через стадию образования промежуточного комплекса, который характеризуется изменением типа гибридизации исходного альдегида.

Молекула принимает тип гибридизации, который будет в конечных продуктах реакции. Механизм реакции имеет вид:

1. Взаимодействие с синильной кислотой:

Кетоны в реакции AdN вступают труднее, чем альдегиды.

Это связано с пространственными препятствиями алкильных радикалов кетонов при образовании промежуточной структуры.

2. Присоединение гидросульфита натрия:

С гидросульфитом натрия вступают во взаимодействие только метилкетоны.

Реакции карбонильных соединений с гидросульфитом натрия используются для очистки продуктов от карбонильных соединений.

Взаимодействие с аммиаком:

Взаимодействие кетонов с аммиаком происходит иначе:

Взаимодействие с гидроксиламином. При взаимодействии карбонильных соединений с гидроксиламином образуются оксимы:

Эта реакция используется для количественного определения карбонильных соединений в реакционных смесях, различных продуктах. При этом используется солянокислый гидроксиламин (NH2-OH•HCl).

Взаимодействие альдегидов с гидразином:

Аналогично взаимодействуют кетоны.

6. Взаимодействие с фенилгидрозином:

7. Реакции гидрирования. При восстановлении альдегидов образуются первичные спирты. При восстановлении кетонов образуются вторичные спирты.

При восстановлении кетонов водородом в момент выделения возможно образование пинаконов.

Взаимодействие альдегидов со спиртами:

Реакции окисления. Окисление карбонильных соединений протекает в мягких условиях.

Альдегиды окисляются до карбоновых кислот. Кетоны окисляются до смеси кислот с разрывом углеводородной цепочки:

Реакции серебряного зеркала:

Реакции с участием α- водородных атомов. В альдегидах и кетонах атомы водорода в α- положении к углероду карбонильной группы очень подвижны и способны диссоциировать по типу кислоты.

Подвижность протонов в α- положении обусловлена акцепторным влиянием кислорода, снижающим электронную плотность на углероде в α- положении.

Структура ІІІ энергетически стабильна, так как стабилизирована резонансом.

Структура ІІІ является гибридом двух структур: І и ІІ.

1. Реакция бромирования:

Физические свойства и получение оксимов

Оксимы, производные альдегидов или кетонов (соответственно альдоксимы RCH=NOH или кетоксимы RR’C=NOH) – жидкости или низкоплавкие твердые вещества (табл. 1), хорошо растворимые во многих органических растворителях, плохо – в холодной воде.

Оксимы альдегидов и несимметричных кетонов существуют в виде двух стереоизомерных форм, например для бензальдоксима: син- (Е, рис. 1,а) и анти- (Z, рис. 1,б), которые могут существенно различаться по своим свойствам. Взаимные превращения стереоизомеров осуществляются при действии кислот или при облучении.

СоединениеМол.м.Тпл., °СТкип., °С
Формальдоксим

45.04284
Ацетальоксим

59.06847115
Бензальдоксим

121.134
син-36-7200
анти-132
Глиоксим

88.072178 (c разл.)возгоняется
Ацетоксим

121.13461134,8
Циклогексаноноксим

113.15890206-210

ИК спектры оксимов имеют 2 слабые полосы поглощения при 3650-3500 и 1690-1650 см -1, отвечающие валентным колебаниям О—Н и C=N связей соотв., и сильную полосу при 960-930 см -1 (валентные колебания N—О-связи).

Методы синтеза

Наиболее распространенным лабораторным методом оксимов является реакции альдегидов и кетонов с гидроксиламином

CH3COCH3 + NH2OH CH3(C=N-OH)CH3 + H2O

Другим широко используемым методом является изомеризация нитрозосоединений, образующихся in situ при нитрозировании некоторых алканов (например, циклогексана нитрозилхлоридом NOCl) или соединений с активированной метильной либо метиленовой группой:

PhCOCH3 + C5H11ONO [ PhCOCH2N=O ] PhCOCH=N-OH

Оксимы также могут быть синтезированы окислением первичных аминов:

RR1CH-NH2 + H2O2 RR1C=NOH + H2O

либо восстановлением нитросоединений:

RCH2NO2 + [H] RCH=NOH + H2O

Образование оксимов используют для выделения, идентификации и количеств.

определения карбонильных соединений. Некоторые оксимы – аналитические реагенты, например диметилглиоксим применяют для разделения и концентрирования Ni (II), Pd(II) и Re(IV), 1,2-диоксимы – для определения Ni, Co, Сu и платиновых металлов, 2,2′-фурилдиоксим [1,2-(2-фурил)этандион-диоксим] – для определения Pd в рудах, формальдоксим – реагент для фотометрия, определения Mn(III), Ce(IV), V(V) в щелочной среде.

Оксимы применяют для получения пестицидов (например, бутокарбоксим, бутоксикарбоксим), лекарственных препаратов (например, 2-пиридин-альдоксимметиодид), циклогексаноноксим используется в производстве капролактама.

Реакции присоединения к альдегидам и кетонам

Первая группа свойств— реакции присоединения. В карбонильной группе между углеродом и кислородом присутствует двойная связь, которая, как вы помните, состоит из сигма-связи и пи-связи.

В реакциях присоединения пи-связь рвется и образуются две сигма связи — одна с углеродом, вторая — с кислородом. На углероде сосредоточен частичный положительный заряд, на кислороде — частичный отрицательный. Поэтому к углероду присоединяется отрицательно заряженная частица реагента, анион, а к кислород — положительно заряженная часть молекулы.

Первое свойство — гидрирование, присоединение водорода.

Реакция проходит при нагревании.

Применяется уже известный вам катализатор гидрирования — никель. Из альдегидов получаются первичные спирты, из кетонов вторичные.

У вторичных спиртов гидроксогруппа связана со вторичным атомом углерода.

Второе свойство — гидратация, присоединение воды. Эта реакция возможна только для формальдегида и ацетальдегида. Кетоны совсем не реагируют с водой.

Все реакции присоединения идут таким образом, что плюс идет к минусу, а минус к плюсу.

Как вы помните из видео про спирты, наличие двух гидроксогрупп у одного атома почти невозможная ситуация, такие вещества крайне неустойчивы.

Так вот конкретно два этих случая — гидрат формальдегида и уксусного альдегида — возможны, хотя и существуют только в растворе.

Сами реакции знать не обязательно. Скорее всего, вопрос на экзамене может звучать как констатация факта, допустим, с водой реагируют и перечислены вещества. Среди их перечня которых могут быть метаналь или этаналь.

Третье свойство — присоединение синильной кислоты.

Снова плюс идет к минусу, а минус к плюсу.

Получаются вещества, называемые гидроксинитрилами. Опять же, сама реакция встречается нечасто, но знать об этом свойстве нужно.

Четвертое свойство — присоединение спиртов.

Здесь снова не нужно знать наизусть уравнение реакции, просто надо понимать, что такое взаимодействие возможно.

Как обычно в реакциях присоединения к карбонильной группе — плюс к минусу, а минус к плюсу.

Пятое свойство — реакция с гидросульфитом натрия.

И снова, реакция довольно сложная, выучить ее вряд ли получится, но это одна из качественных реакций на альдегиды, потому что полученная натриевая соль выпадает в осадок.

То есть по факту вы должны знать, что альдегиды реагируют с гидросульфитом натрия, этого будет достаточно.

На этом закончим с первой группой реакций. Вторая группа — реакции полимеризации и поликонденсации.

Полимеризация и поликонденсация альдегидов

С полимеризацией вы знакомы: полиэтилен, бутадиеновый и изопреновый каучуки, поливинилхлорид — это продукты объединения множества молекул (мономеров) в одну большую, в единую полимерную цепь.

То есть получается один продукт. При поликонденсации происходит то же самое, но помимо полимера получаются еще низкомолекулярные продукты, например, вода. То есть получается два продукта.

Итак, шестое свойство — полимеризация.

Кетоны в эти реакции не вступают, промышленное значение имеет только полимеризация формальдегида.

Пи-связь рвется и образуются две сигма связи с соседними мономерами. Получается полиформальдегид, называемый также параформ. Вероятнее всего, вопрос на экзамене может звучать так: в реакции полимеризации вступают вещества.

И приведен список веществ, среди которых может быть в формальдегид.

Седьмое свойство — поликонденсация.

Оксосоединения. Альдегиды и кетоны

Еще раз: при поликонденсации помимо полимера получается еще низкомолекулярное соединение, например, вода. Формальдегид вступает в такую реакцию с фенолом. Для наглядности сначала запишем уравнение с двумя молекулами фенола.

4.1.5. Качественные реакции органических соединений.

Алкены >C=C C=C C(OH)-C(OH) C=C C(Br)-C(Br) +

Постепенное обесцвечивание подкисленного раствора KMnO4. Выпадения бурого осадка MnO2 не наблюдается, поскольку марганец восстанавливается до практически бесцветной соли двухвалентного марганца. Чаще всего в качестве подкислителя изпользуют серную кислоту. На примере с толуолом реакция выглядит следующим образом:

Исчезновение желто-коричневой окраски бромной воды с одновременным выпадением белого осадка трибромфенола:

Разбавленный водный раствор соли железа (III), например,

Исчезновение желто-коричневой окраски бромной воды с одновременным выпадением белого осадка триброманилина:

Одноатомные первичные и вторичные спирты

Черный CuO при нагревании со спиртом изменяет свою окраску на красную в связи с восстановлением до Cu 0 . Первичный спирт при этом превращается в альдегид:

R-CH2-OH + CuO =t o => R-CHO + Cu + H2O,

вторичный — в кетон:

R-C(OH)-R’+ CuO =t o => R-C(O)-R’ + Cu + H2O,

В случае метанола появляется легко узнаваемый запах формальдегида (естественно, чтобы он был узнаваемым, нужно до этого быть знакомым с его запахом:-) )

В случае реакции с CuO этилового спирта чувствуется специфический запах ацетальдегида, схожий с ароматом прелых яблок сорта «антоновка»

Растворение голубого осадка Cu(OH)2 с образование ярко-синего раствора комплексного соединения меди. На примере с глицерином уравнение реакции выглядит следующим образом:

Альдегиды,

CHO

Аммиачный раствор оксида серебра

Так называемая реакция серебряного зеркала. В результате восстановления Ag +1 в металлическое серебро Ag 0 на стенках сосуда образуется зеркало. При небрежном смешении реагентов или в недостаточно чистом сосуде вместо серебряного зеркала может образоваться черный осадок, состоящий из мелкодисперсных частиц металлического серебра. В обоих случаях наблюдаемые явления описываются уравнением в общем виде:

Образование оранжево-красного осадка Cu2O при нагревании в результате реакции:

Карбоновые кислоты,

-COOH

Выделение углекислого газа в результате разложения образующейся нестойкой угольной кислоты H2CO3:

Появление запаха сложного эфира, образующегося в результате реакции:

R-COOH + R’-OH → R-COO-R’ + H2O

Запахи эфиров весьма разнообразны, но общим является ярко выраженная пахучесть, нередко, могут напоминать ароматы различных фруктов.

Муравиная кислота

-СНО

и

-СООН

Окрашивание лакмуса в красный цвет, по причине кислой среды, создаваемой муравьиной кислотой:

HCOOH ↔ HCOO — + H +

Аммиачный раствор оксида серебра

Молекуле муравьиной кислоты, не смотря на ее малый размер удается сочетать в себе помимо карбоксильной группы также и карбонильную, которая позволяет вступать муравьиной кислоте в реакцию серебряного зеркала подобно альдегидам:

Растворимые соли жирных карб. кислот, например, стеарат натрия

Выпадение хлопьевидного белого осадка малорастворимой жирной кислоты:

Выпадение белого осадка нерастворимой кальциевой или магниевой соли жирной кислоты. Ионное уравнение в общем виде:

где R-длинный углеводородный радикал.

На примере, стеарата натрия и хлорида кальция молекулярное уравнение реакции выглядит так:

Окрашивание фенолфталеина в малиновый цвет как в щелочах, ввиду того, что соли жирных кислот гидролизуются по аниону:


источники:

http://cyberlesson.ru/kachestvennaja-reakcija-na-aldegidy-i-ketony/

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/kachestvennye-reakcii-na-organicheskie-veshhestva

Соединение, функциональная группаРеагентЧто наблюдается, уравнение реакции
ФенолБромная вода
Светло-желтая окраска разбавленного раствора соли трехвалентного железа сменяется на фиолетовую
АнилинБромная вода
Многоатомные спиртыСвежеосажденный Cu(OH)2 (II)
ЛакмусОкрашивание лакмуса в красный цвет
Карбонаты, например, K2CO3
Спирт + конц. H2SO4Любая сильная неорганическая кислота или кислота средней силы H2SO4 (разб.) HCl HI HBr HNO3 (разб.) H3PO4
Раствор соли Ca или Mg
Фенолфталеин