Качественная реакция на спирт уравнение реакции

Спирты

Спирты — кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда — метанол — CH3OH. Общая формула их гомологического ряда — CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH — гликоли), трехатомными (3 группы OH — глицерины) и т.д.

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода), вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса «ол» к названию алкана с соответствующим числом атомов углерода: метанол, этанол, пропанол, бутанол, пентанол и т.д.

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с простыми эфирами, которых мы также коснемся в данной статье.

Получение спиртов
  • Гидролиз галогеналканов водным раствором щелочи

Помните, что в реакциях галогеналканов со сПИртовым раствором щелочи получаются Пи-связи (π-связи) — алкены, а в реакциях с водным раствором щелочи образуются спирты.

Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода, а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных химических соединений, в том числе и метанола.

Получение этанола брожением глюкозы

В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы — образуется двухатомный спирт (гликоль).

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения. У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии — кислотные.

Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.

Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

Реакция с галогеноводородами

Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

В результате реакций спиртов с кислотами образуются различные эфиры.

Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.

Возможен межмолекулярный механизм дегидратации (при t 140°С) механизм дегидратации становится внутримолекулярный — образуются алкены.

Названия простых эфиров формируются проще простого — по названию радикалов, входящих в состав эфира. Например:

  • Диметиловый эфир — CH3-O-CH3
  • Метилэтиловый эфир — CH3-O-C2H5
  • Диэтиловый эфир — C2H5-O-C2H5

Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое окрашивание.

Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при которых углеродный скелет подвергается деструкции.

Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой реакции выпадает маслянистый осадок.

Первичные спирты окисляются до альдегидов, а вторичные — до кетонов. Альдегиды могут быть окислены далее — до карбоновых кислот, в отличие от кетонов, которые являются «тупиковой ветвью развития» и могут только снова стать вторичными спиртами.

Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор окрашивается в характерный синий цвет.

Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов). Это говорит об их более выраженных кислотных свойствах.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Качественная реакция на спирт уравнение реакции

Органическая химия

Качественные реакции в органической химии

Качественные реакции на алканы

Для этого газ либо поджигают — горение алканов сопровождается синим пламенем, либо пропускают через раствор перманганата калия. Алканы не окисляются перманганатом калия на холоду, вследствие этого раствор не будет изменять окраску.

Качественные реакции на алкены

а) Обесцвечивание перманганата калия (реакция Вагнера).

При этом этилен окисляется в двухатомный спирт этиленгликоль .

СН2=СН2 + [О] CH2ОН-CH2ОН

б) Обесцвечивание бромной воды:

Качественные реакции на алкины

а) Обесцвечивание перманганата калия (реакция Вагнера).

б) Обесцвечивание бромной воды:

в) Взаимодействие с с аммиачным раствором оксида серебра (гидроксид диаминсеребра (I)) (реактив Толленса)

Получившийся ацетиленид серебра (I) выпадает в осадок.

Алкины, у которых тройная связь в середине (R-C≡C-R) в эту реакцию не вступают.

Такая способность алкинов — замещать протон на атом металла, подобно кислотам — обусловлено тем, что атом углерода находится в состоянии sp-гибридизации и электроотрицательность атома углерода в таком состоянии такая же, как у азота. Вследствие этого, атом углерода сильнее обогащается электронной плотностью и протон становится подвижным.

Качественные реакции на альдегиды

а) Взаимодействие с аммиачным раствором оксида серебра (реакция серебряного зеркала)

Примечание: реакцией серебряного зеркала также можно выявить метановую (муравьиную) кислоту HCOOH. При чем тут кислота, если мы говорим про альдегиды? Все просто: муравьиная кислота — единственная из карбоновых кислот, содержащая одновременно альдегидную и карбоксильную группы:

В ходе реакции метановая кислота окисляется до угольной, которая разлагается на углекислый газ и воду:

б) Взаимодействие с гидроксидом меди (II) (реакция медного зеркала)

Для этого к свежеприготовленному гидроксиду меди (II) добавляют альдегид и нагревают смесь:

CH 3 -CHO + 2Cu(OH) 2 —> CH 3 -COOH + Cu 2 O↓ + 2H 2 O (реакция идет при нагревании)

Выпадает оксид меди (I) Cu2O — осадок красного цвета.

в) Взаимодействие с раствором фуксинсернистой кислоты.

При добавлении альдегида к раствору фуксинсернистой кислоты раствор окрашивается в светло-фиолетовый цвет.

Качественные реакции на спирты

Спирты по количеству гидроксильных групп бывают одно-, двух-, многоатомными. Для одно- и многоатомных спиртов реакции различны.

а) Окисление спирта оксидом меди.

Для этого пары спирта пропускают над раскаленным оксидом меди. Затем полученный альдегид улавливают фуксинсернистой кислотой, раствор становится фиолетовым:

б) Взаимодействие с натрием.

Качественные реакции на многоатомные спирты

а) Взаимодействие с гидроксидом меди (II).

В отличии от альдегидов многоатомные спирты реагируют с гидроксидом меди (II) без нагревания.

К примеру, при приливании глицерина образуется глицерат меди (II) ( хелатный комплекс темно-синего цвета):

Качественные реакции в органической химии

Качественные реакции в органической химии используются для быстрого распознавания класса соединения. Для таких реакций характерно проявление внешних эффектов — изменение цвета раствора, выпадение осадка или выделение газа.

Качественные реакции на алканы

  1. При горении алканов пламя становится голубым.
  2. Реакция окисления алканов перманганатом калия на холоде не идет – раствор не меняет цвет.

Качественные реакции на алкены

  1. Реакция Вагнера – обесцвечивание раствора перманганата калия, сопровождается выпадением темно-коричневого осадка диоксида марганца:
  2. Обесцвечивание бромной воды:

Качественные реакции на алкины

  1. Реакция Вагнера – раствор перманганата калия обесцвечивается и выпадает осадок черного цвета (диоксид магния):
  2. Обесцвечивание бромной воды:
  3. С реактивом Толленса (гидроксид диамин серебра) только алкины с крайними тройными связями образуют осадок ацетиленида серебра. Алкины с другим расположением тройной связи в реакцию не вступают:

Качественные реакции на альдегиды

  1. Реакция серебряного зеркала с реактивом Толленса при нагревании — серебро покрывает зеркальным слоем стенки пробирки. При некачественном проведении эксперимента выпадает черный осадок мелкодисперсного серебра:
  2. Со свежеприготовленным гидроксидом меди при нагревании альдегиды образуют красно-оранжевый осадок оксида меди (I):
  3. С реактивом Несслера (щелочной раствор тетраиодомеркурата (II) калия) образуется осадок металлической ртути черного цвета:
  4. При взаимодействии бесцветных альдегидов с раствором бесцветной фуксинсернистой кислоты раствор окрашивается в светло-фиолетовый цвет.

Качественные реакции на спирты

Спирты делят на одно- и многоатомные (по количеству ОН-групп) и определяют с помощью разных качественных реакций.

1. Для одноатомных спиртов

1.1 С оксидом меди (II) — над раскаленным оксидом пропускают пары спирта, образуется альдегид, который выявляют пробой с фуксинсернистой кислотой – раствор окрашивается в характерный бледно-фиолетовый цвет:

1.2 Йодоформная проба – с йодом и гидроксидом натрия образуется йодоформ, осадок желтого цвета:

1.3. Проба Лукаса для выявления вторичных и третичных спиртов – первичные в реакцию не вступают. При взаимодействии одноатомных спиртов с концентрированным раствором соляной кислоты и хлорида цинка раствор расслаивается и образуется мутный маслянистый слой алкилхлорида:

2. Для многоатомных спиртов на примере глицерина

Голубой осадок гидроксида меди (II) при нормальных условиях растворяется в глицерине с образованием комплексного соединения меди ярко-синего цвета:

Качественные реакции на карбоновые кислоты

1. Фиолетовый раствор лакмуса карбоновые кислоты окрашивают в красный цвет.

2. Разложение под действием серной кислоты на угарный газ и воду. Выделяющийся угарный газ можно поджечь – он горит синим пламенем.

Для муравьиной кислоты:

Аналогично разлагается и многоосновная щавелевая кислота:

3. Реакция щавелевой кислоты с солями меди (II) – выпадает зелено-голубой кристаллический осадок оксалата меди:

Качественные реакции на амины

  1. Фиолетовый раствор лакмуса амины окрашивают в синий цвет.
  2. Образование дыма в результате взаимодействия летучих аминов с газообразным хлороводородом.
  3. Первичные амины с хлороформом в щелочной среде образуют соединения – изонитрилы с характерным неприятным запахом:

Качественные реакции на анилин

  1. При действии хлорной извести водный раствор анилина приобретает интенсивный фиолетовый цвет.
  2. При бромировании образуется белый осадок 2,4,6-триброманилина:

Качественные реакции на фенол

  1. При взаимодействии с хлоридом железа (III) раствор приобретает фиолетовый цвет:
  2. С бромной водой образует твердый белый осадок 2,4,6-трибромфенола:
  3. При поликонденсации фенолов с альдегидами в кислой или щелочной среде образуются смолообразные полимеры и вода.

Качественные реакции на алкилхлориды

Проба Бейльштейна – качественная реакция определения хлора в органических соединениях.

Образец алкилхлорида на прокаленной медной проволоке помещают в пламя горелки, которое становится сине-зеленым.

Качественные реакции на углеводы

Углевод содержат альдегидные и гидрокси- группы — характерными будут реакции на спирты и альдегиды.

1. Крахмалсодержащие растворы под действием йода становятся синими.

  • при нагревании раствор обесцвечивается;
  • охлажденный – восстанавливает синий цвет.

2. Проба Селиванова определяет наличие фруктозы. В присутствии резорцина и соляной кислоты углевод приобретает красно-вишневый цвет.

Качественные реакции на белки

Цветные реакции позволяют выявить наличие белков в растворах.

  1. Ксанторотеиновая или Мульдера реакция выявляет в белке наличие аминокислот ароматического ряда (триптофана, тирозина и фенилаланина). Раствор обрабатывается концентрированной азотной кислотой – он окрашивается в желтый цвет; после добавления щелочи цвет изменяется на оранжевый.
  1. Реакция Фоля указывает на наличие аминокислот, содержащих слабосвязанную серу (цистина и цистеина). При кипячении белка со щелочью сера в виде сульфида свинца дает осадок бурого или черного цвета.
  1. Горение белка сопровождается запахом паленой шерсти. Качественные реакции в органической химии помогают с минимальными затратами определить, к какому классу соединений относится вещество.


источники:

http://www.sites.google.com/site/school302chemistry/opyty/kacestvennye-reakcii-10-klass

http://allinchemistry.ru/organicheskaya-himiya/kachestvennye-reaktsii-v-organicheskoj-himii