Качественная теория дифференциальных уравнений лекции

Лекции по качественной теории дифференциальных уравнений, Оболенский А.Ю., 2005

Лекции по качественной теории дифференциальных уравнений, Оболенский А.Ю., 2005.

Данное учебно-методическое пособие содержит краткий курс лекций по качественной теории дифференциальных уравнений.
Для студентов и аспирантов математических специальностей и преподавателей теории дифференциальных уравнений.

Римановы поверхности и аналитические множества.
При рассмотрении дифференциальных уравнений, не разрешенных относительно старшей производной, возникает необходимость рассмотрения многозначных функций. Рассмотрим понятия аналогичные римановым поверхностям над комплексной плоскостью. Здесь мы изложим основные определения п некоторые результаты, связанные с этим понятием.

Каждое комплексное многообразие размерности и посредством локальных координат локально гомеоморфно отображается в пространство Сn. Однако локальные координаты не определены глобально на многообразии, т.е. не являются на нем функциями в обычном смысле.

ОГЛАВЛЕНИЕ
Предисловие
ГЛАВА 0 ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ
§1. Топологические пространства
0.1.1. Упорядоченные множества
0.1.2. Сети
п.0.1.3. Предварительные сведения из общей топологии
0.1.4. Непрерывные отображения
0.1.5. Сети в топологическом пространстве
0.1.6. Произведение пространств и произведение топологий
п.0.1.7. Бикомпактные пространства
0.1.8. Теорема Тихонова
§2. Метрические пространства
0.2.1. Определение и основные свойства
0.2.2. Отображения, удовлетворяющие условию Липшица
0.2.3. Теорема Бэра
§3. Банаховы пространства
п.0.3.1. Определение и основные свойства
0.3.2. Теорема Хана -Банаха
0.3.3. Операторные топологии
0.3.4. Теорема об обратной функции
0.3.5. Теорема Асколи-Арцела
ГЛАВА 1 ТЕОРЕМЫ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ
§1. Теоремы существования
1.1.1. Теорема Пикара — Линделёфа
1.1.2. Теорема Пеано
п. 1.1.2. Теорема Кнезера
1.1.3. Пример неединственности
§2. Дифференциальные неравенства и их применение
1.2.1. Дифференциальные неравенства
1.2.2. Теорема Уинтнера
п. 1.2.2. Теоремы единственности
§3. Зависимость от начальных условий и параметров
1.3.1. Предварительные замечания
п. 1.3.2. Непрерывность
п. 1.3.3. Дифференцируемость
ГЛАВА 2 ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ТОПОЛОГИИ
§1. Многообразия
2.1.1. Определения
2.1.2. Примеры дифференцируемых многообразий
2.1.3. Касательное расслоение
2.1.4. Векторные поля и производные Ли
§2. Теорема Фробениуса
§3. Теорема Сарда
2.3.1. Доказательство теоремы Сарда
2.3.2. Теорема Брауэра о неподвижной точке
ГЛАВА 3 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§1. Автономные системы
3.1.1. Резольвента и её свойства
3.1.2. Операторное исчисление..
п.3.1.3. Разбиение спектра и пространства
3.1.4. Линейные системы в конечномерном пространстве
§2. Линейные аналитические уравнения
3.2.1. Предварительные сведения. Теория Флоке — Ляпунова
3.2.2. Простые особенности
3.2.3. Условия Фукса
3.2.3. Группа монодромии
3.2.4. Уравнение Римана
ГЛАВА 4 НЕЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В КОМПЛЕКСНОЙ ОБЛАСТИ
§1. Теоремы существования
4.1.1. Метод мажорант
4.1.2. Римановы поверхности и аналитические множества
4.1.3. Классификация особых точек
4.1.4. Уравнение Риккати
§2. Уравнения первого порядка не первой степени
4.2.1. Условия Фукса
4.2.2. Теорема Пенлеве
ГЛАВА 5 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ПЕРВОГО ПОРЯДКА
§1. Постановка задачи. Линейные и квазилинейные уравнения
§2. Теорема существования и единственности
ГЛАВА 6 ДИНАМИЧЕСКИЕ СИСТЕМЫ
§1. Определение. Общие предельные свойства
6.1.1. Определение динамической системы. Основные свойства
6.1.2. Устойчивость по Лагранжу
6.1.3. Устойчивость по Пуассону
§2. Центральные движения
6.2.1. Центр Биркгофа
6.2.2. Минимальный центр притяжения
§3. Рекуррентные и почти периодические движения
6.3.1. Минимальные множества и рекуррентные движения
6.3.2. Почти периодические движения
§4. Расширения динамических систем и неавтономные дифференциальные уравнения
§5. Теорема Пуанкаре — Бендиксона
§6. Уравнения второго порядка
ГЛАВА 7 ЭЛЕМЕНТЫ ЭРГОДИЧЕСКОЙ ТЕОРИИ
§1. Определение. Основные свойства
§2. Теорема Биркгофа -Хинчина
§3. Разложение инвариантных мер
7.3.1. Теорема Крейна — Мильмана
п.7.3.2. Разложение инвариантных мер
ГЛАВА 8 СТРУКТУРНАЯ УСТОЙЧИВОСТЬ
§1. Определения. Подход Смейла
§2. Гладкие динамические системы на торе
8.2.1. Гомеоморфизмы окружности
8.2.2. Теорема Данжуа
8.2.3. Потоки на торе
§3. Теорема Гробмана — Хартмана
ГЛАВА 9 АСИМПТОТИЧЕСКИЙ МЕТОД
§1. Усреднение на конечном интервале
§2. Функция Грина
9.2.1. Ограниченное решение неоднородного уравнения
9.2.2. Ограниченное решение квазилинейного уравнения
§3. Вторая теорема Боголюбова
Литература.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по качественной теории дифференциальных уравнений, Оболенский А.Ю., 2005 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Лекции по теме «Дифференциальные уравнения» Е.Н.01 Математика.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Департамент образования и науки Приморского края

Краевое государственное автономное

профессиональное образовательное учреждение

«Региональный технический колледж»

Учебная дисциплина Е.Н.01 МАТЕМАТИКА

Преподаватель высшей квалификационной категории учебной дисциплины

Лекции изложены в доступном пониманию виде и могут быть использованы студентами при самостоятельной подготовке к занятиям.

Изложение теоретического материала по теме сопровождается рассмотрением большого количества примеров и задач, что позволит подготовиться к выполнению практической работы. В конце лекции представлены вопросы, необходимые для самоподготовки и темы для самостоятельного изучения.

Пособие поможет обучающимся освоить тему «Дифференцированные уравнения» курса высшей математики, подготовиться к сдаче зачётов и экзаменов.

Лекции по теме «Дифференцированные уравнения» рекомендованные для всех специальностей в образовательных учреждениях среднего профессионального образования.

Раздел 1. Дифференциальное и интегральное исчисление

Тема 1.2. Обыкновенные дифференциальные уравнения

1.Задачи, приводящие к дифференциальным уравнениям. Общее и частное решение.

2.Дифференциальные уравнения с разделяющими переменными.

3.Линейные дифференциальные уравнения 1 порядка.

4.Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами.

1. Задачи, приводящие к дифференциальным уравнениям. Общее и частное решение.

Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные (или дифференциалы) этих функций. Если независимая переменная одна, то уравнение называется обыкновенным; если же независимых переменных две или больше, то уравнение называется уравнением в частных производных.

Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения.

х+ уу’=0 – обыкновенное дифференциальное уравнение 1 порядка.

— 4 xy = — обыкновенное дифференциальное уравнение 2-го порядка.

О: Решением дифференциального уравнения называется такая дифференцируемая функция у=(х), которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество.

О: Общим решением дифференциального уравнения 1-го порядка у’= f ( x ;у) в области D называется функция у=(х,С), обладающая следующими свойствами:

1)она является решением данного уравнения при любых действительных значениях произвольной постоянной С;

2)для любого начального условия у(х 0 ) = у 0 такого, что (х 00 ) , существует единственное значение С=С 0 , при котором решение у=(х,С 0 ) удовлетворяет заданному начальному условию.

О: Всякое решение у=(х,С 0 ), получающееся из общего решения у=(х,С) при конкретном значении С=С 0 , называется частным решением.

О: Задача, в которой требуется найти частное решение уравнения у’ = f ( x ; y ), удовлетворяющих начальному условию у(х 0 ) = у 0 , называется задачей Коши.

Построенный на плоскости хОу график всякого решения у=(х) данного дифференциального уравнения называется интегральной кривой этого уравнения. Таким образом, общему решению (х;С) на плоскости хОу соответствует семейство интегральных кривых, зависящее от одного параметра – произвольной постоянной С, а частному решению, удовлетворяющему начальному условию у(х 0 ) = у 0 , — кривая этого семейства, проходящая через точку (х 00 ).

2. Дифференциальные уравнения с разделяющими переменными

О: Дифференциальное уравнение вида

называется уравнением с разделяющими переменными.

Если f 2 ( x ) ≠ 0 и 1 ( y ) ≠ 0, то его можно представить в виде

В результате почленного интегрирования получаем

Пример 1. Решить уравнение у’ = .

Решение. f 2 ( x ) = x , 1 ( y ) = у, = , ydx = xdy . Разделяя переменные, получаем = . Интегрируя, = + С 1 |, С 1 0 или = + С 1 .

Потенцируя, находим | у| = | С 1 | |х |, что эквивалентно уравнению у = С 1 х. Полагая С 1 = С, окончательно получаем у = Сх.

Пример 2. Найти общее решение дифференциального уравнения

(1 + е 2х ) у 2 dy = е х dx и частное решение, удовлетворяющее начальному условию у(0) = 0.

Решение. Разделим переменные: у 2 dy = . Почленно интегрируя,

Получим : у 3 = arctg е х + С, или у 3 = 3 arctg е х + C , или у = — общее решение дифференциального уравнения.

Найдем постоянную интегрирования С из условия у(0) = 0: 0 = + С или С = — . Частное решение имеет вид: у 3 = 3 arctg е х — ,

Пример 3. Найти общее решение дифференциального уравнения

х + у у ‘ = 0 и частное решение, удовлетворяющее начальному условию у(0) = 2.

Решение. Разделяя переменные и обозначая у’ = , получим

y = — x ydy = — xdx.

Почленно интегрируя, будем иметь = — + С или х 2 + у 2 = С — общее решение дифференциального уравнения. Найдем постоянную интегрирования С из условия у(0) = 2 : 0 + 4 = С С = 4. Частное решение имеет вид х 2 + у 2 = 4.

Замечание. Геометрической интерпретацией общего решения данного уравнения является семейство концентрических окружностей х 2 + у 2 = С

С центром в начале координат. Частное решение представляет собой конкретную окружность х 2 + у 2 = 4, проходящую через точку с координатами (0;2).

3.Линейные дифференциальные уравнения 1 порядка.

О: Дифференциальное уравнение вида у’ + Р(х) у = Q ( x ) называется линейным. Если Q ( x ) 0, то уравнение называется линейным неоднородным, а если Q ( x ) = 0, то – линейным однородным.

Общее решение линейного однородного уравнения у’ + Р(х) у = 0 легко получается разделением переменных

= — P (x) y = — P (x) y = — dx + = — y = C .

Пример 1. Найти общее решение уравнения у’ + 3у = е 2х .

Решение. Данное уравнение является линейным. Здесь р(х) = 3; f (х) = е 2х . Решаем сначала соответствующее однородное уравнение у’ + 3у = 0. Разделяя переменные = — 3 dx и интегрируя, находим

= — 3х + или у = С 1 е -3х = С е -3х .

Общее решение данного неоднородного уравнения будем искать в том же виде у = С(х) е -3х , только произвольную постоянную будем считать уже функцией от х. Здесь применен метод вариации постоянной. Дифференцируя, имеем у’ = С’ (х) е -3х – 3С(х) е -3х . Подставляя в данное уравнение выражения для у и у’, получаем

С’ (х) е -3х = е 2х , С’ (х) = е 5х или dC = е 5х d х, откуда С(х) = е 5х + С 2 , где С 2 – произвольная постоянная. Следовательно, общее решение данного уравнения имеет вид у = С(х) е -3х = ( е 5х + С 2 ) е -3х или у = е 2х + С 2 е -3х .

Найдем теперь общее решение данного уравнения методом подстановки. Положим у = uv . Тогда будем иметь y ‘ = u ‘ v + uv ‘.

Подставляя эти выражения в данное уравнение, получим

u ‘ v + uv ‘ + 3 uv = е 2х или u ‘ v + u ( v ‘ + 3 v ) = е 2х . ()

Теперь потребуем, чтобы выражение в скобках обратилось в нуль, т.е. чтобы v ‘ + 3 v = 0, откуда = — dx ; = — x ; = e — x ; v = e -3 x .

Подставляя найденное значение v в (), найдем u ‘ e -3 x = e 2 x ; du = e 5 x dx ;

u = е 5х + С. Но у = uv , поэтому у = е -3х ( е 5х + С ) или у = е 2х + С е -3х .

Пример 2. Найти общее решение дифференциального уравнения

ху’ + 2у = и частное решение, удовлетворяющее начальному условию

Подставляя у и у’ в исходное уравнение, будем иметь

x v u’ + x u v’ + 2u v = ; u ( x v’ + 2v ) + x v u’ = .

Решим оставшееся уравнение:

x v u’ = xv = x = = 1 du = dx u = x + C.

Общее решение уравнения имеет вид y = u v = .

Найдем частное решение: 1 = С = 6 у = .

4.Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами.

некоторые постоянные действительные числа, называется линейным однородным уравнением второго порядка с постоянными коэффициентами.

Теорема. Если у 1 (х) и у 2 (х) — два линейно независимых частных решения уравнения 0 у» + 1 у’ + 2 у = 0, то у = С 1 у 1 + С 2 у 2 есть общее решение этого уравнения (С 1 и С 2 — произвольные постоянные ).

Теорема. Частное решение линейного однородного уравнения второго порядка с постоянными коэффициентами 0 у» + 1 у’ + 2 у = 0

может быть найдено в виде у = е kx .

Доказательство. После нахождения у’ = k e kx , y » = k 2 e kx и подстановки в уравнение, получим 0 k 2 e kx + 1 k e kx + 2 e kx = 0 e kx ( 0 k 2 + 1 k + 2 ) = 0.

Поскольку е kx 0, то 0 k 2 + 1 k + 2 = 0.

Это квадратное уравнение определит те значения k , при которых у = е kx

будет решением дифференциального уравнения. Оно называется характеристическим уравнением.

Случай 1. Корни k 1 и k 2 квадратного уравнения действительны и различны ( k 1 k 2 ) ( D 0). Получим два частных линейно независимых решения у 1 = ; у 2 = . Общее решение исходного однородного дифференциального уравнения будет иметь вид: у = С 1 + С 2 .

Пример 3. Найти общее решение уравнения у» – 3у’ +2у’ =0.

Решение. Составляем характеристическое уравнение, заменяя у» на k 2 , у’ на k , а у на 1. Получаем k 2 — 3 k + 2 = 0; k 1 = 1; k 2 = 2 y = C 1 e x + C 2 e 2 x .

Случай 2. Корни k 1 и k 2 квадратного уравнения действительны и одинаковы ( k 1 = k 2 = k = — ( D = 0).

В этом случае общее решение имеет вид:

у = C 1 e kx + C 2 х e kx = ( C 1 + C 2 x ) e kx .

Пример 4. Найти общее решение уравнения у» – 2у’ + 1 = 0.

Решение. Соответствующее характеристическое уравнение имеет вид

k 2 – 2 k + 1 =0. Корни уравнения k 1 = k 2 = 1 действительные и равные.

Этим корням соответствуют частные линейно независимые решения

у 1 = е х , у 2 = х е х ; = const . Общее решение уравнения имеет вид

у = С 1 е х + С 2 х е х = е х ( С 1 + С 2 х ).

Пример 5. Найти общее решение уравнения у» – 4у’ + 13 =0.

Решение. Соответствующее характеристическое уравнение имеет вид

k 2 – 4 k + 13 = 0. Корни уравнения k 1 = 2 + 3 i , k 2 = 2 – 3 i — комплексные.

Этим корням соответствуют частные линейно независимые решения у 1 = е 2х cos 3 x , y 2 = = е 2х sin 3 x . Общее решение уравнения имеет вид

у = е 2х ( С 1 cos 3 x + C 2 sin 3 x ).


источники:

http://infourok.ru/lekcii-po-teme-differencialnie-uravneniya-en-matematika-3897031.html