Как делить уравнения с корнями

Деление корней: правила, методы, примеры

Наличие квадратных корней в выражении усложняет процесс деления, однако существуют правила, с помощью которых работа с дробями становится значительно проще.

Единственное, что необходимо все время держать в голове — подкоренные выражения делятся на подкоренные выражения, а множители на множители. В процессе деления квадратных корней мы упрощаем дробь. Также, напомним, что корень может находиться в знаменателе.

Метод 1. Деление подкоренных выражений

Записать дробь

Если выражение не представлено в виде дроби, необходимо его так записать, потому так легче следовать принципу деления квадратных корней.

144 ÷ 36 , это выражение следует переписать так: 144 36

Использовать один знак корня

В случае если и в числителе, и знаменателе присутствует квадратные корни, необходимо записать их подкоренные выражения под одним знаком корня, чтобы сделать процесс решения проще.

Напоминаем, что подкоренным выражением (или числом) является выражением под знаком корня.

144 36 . Это выражение следует записать так: 144 36

Разделить подкоренные выражения

Просто разделите одно выражение на другое, а результат запишите под знаком корня.

144 36 = 4 , запишем это выражение так: 144 36 = 4

Упростить подкоренное выражение (если необходимо)

Если подкоренное выражение или один из множителей представляют собой полный квадрат, упрощайте такое выражение.

Напомним, что полным квадратом является число, которое представляет собой квадрат некоторого целого числа.

4 — полный квадрат, потому что 2 × 2 = 4 . Из этого следует:

4 = 2 × 2 = 2 . Поэтому 144 36 = 4 = 2 .

Метод 2. Разложение подкоренного выражения на множители

Записать дробь

Перепишите выражение в виде дроби (если оно представлено так). Это значительно облегчает процесс деления выражений с квадратными корнями, особенно при разложении на множители.

8 ÷ 36 , переписываем так 8 36

Разложить на множители каждое из подкоренных выражений

Число под корнем разложите на множители, как и любое другое целое число, только множители запишите под знаком корня.

8 36 = 2 × 2 × 2 6 × 6

Упростить числитель и знаменатель дроби

Для этого следует вынести из-под знака корня множители, представляющие собой полные квадраты. Таким образом, множитель подкоренного выражения станет множителем перед знаком корня.

2 2 6 6 × 6 2 × 2 × 2 , из этого следует: 8 36 = 2 2 6

Рационализировать знаменатель (избавиться от корня)

В математике существуют правила, по которым оставлять корень в знаменателе — признак плохого тона, т.е. нельзя. Если в знаменателе присутствует квадратный корень, то избавляйтесь от него.

Умножьте числитель и знаменатель на квадратный корень, от которого необходимо избавиться.

В выражении 6 2 3 необходимо умножить числитель и знаменатель на 3 , чтобы избавиться от него в знаменателе:

6 2 3 × 3 3 = 6 2 × 3 3 × 3 = 6 6 9 = 6 6 3

Упростить полученное выражение (если необходимо)

Если в числителе и знаменателе присутствуют числа, которые можно и нужно сократить. Упрощайте такие выражения, как и любую дробь.

2 6 упрощается до 1 3 ; таким образом 2 2 6 упрощается до 1 2 3 = 2 3

Метод 3. Деление квадратных корней с множителями

Упростить множители

Напомним, что множители представляют собой числа, стоящие перед знаком корня. Для упрощения множителей понадобится разделить или сократить их. Подкоренные выражения не трогайте!

4 32 6 16 . Сначала сокращаем 4 6 : делим на 2 и числитель, и знаменатель: 4 6 = 2 3 .

Упростить квадратные корни

Если числитель нацело делится на знаменатель, то делите. Если нет, то упрощайте подкоренные выражения, как и любые другие.

32 делится нацело на 16 , поэтому: 32 16 = 2

Умножить упрощенные множители на упрощенные корни

Помним про правило: не оставлять в знаменателе корни. Поэтому просто перемножаем числитель и знаменатель на этот корень.

Рационализировать знаменатель (избавиться от корня в знаменателе)

4 3 2 7 . Следует умножить числитель и знаменатель на 7 , чтобы избавиться от корня в знаменателе.

4 3 7 × 7 7 = 4 3 × 7 7 × 7 = 4 21 49 = 4 21 7

Метод 4. Деление на двучлен с квадратным корнем

Определить, находится ли двучлен (бином) в знаменателе

Напомним, что двучлен представляет собой выражение, которое включает 2 одночлена. Такой метод имеет место быть только в случаях, когда в знаменателе двучлен с квадратным корнем.

1 5 + 2 — в знаменателе присутствует бином, поскольку есть два одночлена.

Найти выражение, сопряженное биному

Напомним, что сопряженный бином является двучленом с теми же одночленами, но с противоположными знаками. Чтобы упростить выражение и избавиться от корня в знаменателе, следует перемножить сопряженные биномы.

5 + 2 и 5 — 2 — сопряженные биномы.

Умножить числитель и знаменатель на двучлен, который сопряжен биному в знаменателе

Такая опция поможет избавиться от корня в знаменателе, поскольку произведение сопряженных двучленов равняется разности квадратов каждого члена биномов: ( a — b ) ( a + b ) = a 2 — b 2

1 5 + 2 = 1 ( 5 — 2 ) ( 5 — 2 ) ( 5 + 2 ) = 5 — 2 ( 5 2 — ( 2 ) 2 = 5 — 2 25 — 2 = 5 — 2 23 .

Из этого следует: 1 5 + 2 = 5 — 2 23 .

Советы:

  1. Если вы работаете с квадратными корнями смешанных чисел, то преобразовывайте их в неправильную дробь.
  2. Отличие сложения и вычитания от деления — подкоренные выражения в случае деления не рекомендуется упрощать (за счет полных квадратов).
  3. Никогда (!) не оставляйте корень в знаменателе.
  4. Никаких десятичных дробей или смешанных перед корнем — необходимо преобразовать их в обыкновенную дробь, а потом упростить.
  5. В знаменателе сумма или разность двух одночленов? Умножьте такой бином на сопряженный ему двучлен и избавьтесь от корня в знаменателе.

Решение уравнения с помощью понижения степени. Деление многочлена на многочлен столбиком

Деление многочлена на многочлен столбиком

Для решения уравнение вида Р(х)=0, где Р(х) — многочлен степени n>2, часто применяют метод понижения степени. Он основывается на таком факте: если число x=b является корнем многочлена P(x), то есть P(b)=0, то многочлен P(x) делится без остатка на двучлен x-b.

После того, как мы разделим многочлен P(x) степени n на двучлен x-b, то мы получим многочлен степени n-1, то есть на единицу меньшей исходного. И дальше процедуру можно повторить.

Если старший коэффициент многочлена P(x) равен 1, то корни многочлена P(x) мы ищем среди делителей свободного члена.

Решим уравнение

Свободный член многочлена в левой части уравнения равен 10.

Делители числа 10: 1; 2; 5; 10.

Проверим, является ли какое-либо из этих чисел корнем многочлена. Для этого последовательно подставим эти значения вместо х в многочлен.

является корнями многочлена , и он делится на двучлены и без остатка.

Разделим многочлен на двучлен x-2 столбиком:


  • Кубические уравнения. Метод деления в столбик. Примеры *

    Готовиться с нами — ЛЕГКО!

    Эффективное решение существует!

    Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

    Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

    После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

    Определение

    Рассмотрим произвольное уравнение вида

    \[a_nx^n+a_x^+\dots+a_1x+a_0=0 \qquad \qquad (1)\]

    где \(a_n, a_,\dots,a_0\) – некоторые числа, причем \(a_n\ne 0\) , называемое алгебраическим уравнением (с одной переменной) \(n\) -ой степени.

    Обозначим \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) . Таким образом, сокращенно уравнение \((1)\) можно записать в виде \(P_n(x)=0\) .

    Замечание

    Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна \(2\) , а линейное — степень которого равна \(1\) .
    Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

    Теорема

    Если уравнение \((1)\) имеет корень \(x=x_0\) , то оно равносильно уравнению

    где \(P_(x)\) – некоторый многочлен степени \(n-1\) .

    Для того, чтобы найти \(P_(x)\) , необходимо найти частное от деления многочлена \(P_n(x)\) на \((x-x_0)\)
    (т.к. \(P_n(x)=(x-x_0)\cdot P_(x)\) ).

    Следствие: количество корней уравнения

    Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.

    Замечание

    В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

    Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

    Пример

    Известно, что \(x=2\) является корнем уравнения \(2x^3-9x^2+x^4-x+6=0\) . Найдите частное от деления \(2x^3-9x^2+x^4-x+6\) на \(x-2\) .

    Решение.
    Будем делить многочлен на многочлен в столбик. Запишем

    Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала \(x^4\) , затем \(2x^3\) и т.д.
    Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
    Т.к. делитель \(x-2\) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

    Посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(x^4+2x^3\) полученного многочлена уничтожилось слагаемое \(x^4\,\) .
    На \(x^3\) . Тогда после вычитания \(x^4+2x^3-x^3(x-2)\) останется \(4x^3\) . Снесем слагаемое \(-9x^2\) :

    Теперь посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(4x^3-9x^2\) полученного многочлена уничтожилось слагаемое \(4x^3\) .
    На \(4x^2\) : \(\quad 4x^3-9x^2-4x^2(x-2)=-x^2\) .
    Опять снесем следующее слагаемое \(-x\) :

    Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)

    Четвертое слагаемое в частном должно быть \(-3\) :

    Таким образом, можно сказать, что \(x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)\) .

    Замечание

    1) Если \(x=x_0\) действительно является корнем уравнения, то после такого деления в остатке должен быть \(0\) . В противном случае это означает, что деление в столбик выполнено неверно.

    2) Если многочлен делится без остатка (то есть остаток равен \(0\) ) на \(x+a\) , то он также будет делиться без остатка на \(c(x+a)\) для любого числа \(c\ne 0\) . Например, в нашем случае, если бы мы поделили многочлен, к примеру, на \(2x-4\) , то получили бы в частном \(\frac12 x^3+2x^2-\frac12x-\frac32\) .
    Заметим, что также происходит и с числами: если мы разделим \(10\) на \(2\) , то получим \(5\) ; а если разделим \(10\) на \(3\cdot 2\) , то получим \(\frac53\) .

    3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения \(x^4+2x^3-9x^2-x+6=0\) , необходимо найти корни уравнения \(x^3+4x^2-x-3=0\) .
    Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

    Теорема

    Если число \(x=1\) является корнем уравнения \((1)\) , то сумма всех коэффициентов уравнения равна нулю:

    Доказательство

    Действительно, так как \(x=1\) является корнем уравнения \((1)\) , то после подстановки \(x=1\) в него мы получим верное равенство. Так как \(1\) в любой степени равен \(1\) , то слева мы действительно получим сумму коэффициентов \(a_i\) , которая будет равна нулю.

    Пример

    У уравнения \(x^2-6x+5=0\) сумма коэффициентов равна нулю: \(1-6+5=0\) . Следовательно, \(x=1\) является корнем этого уравнения. Это можно проверить просто подстановкой: \(1^2-6\cdot 1+5=0\quad\Leftrightarrow\quad 0=0\) .

    Теорема

    Если число \(x=-1\) является корнем уравнения \((1)\) , то сумма коэффициентов при четных степенях \(x\) равна сумме коэффициентов при нечетных степенях \(x\) .

    Доказательство

    1) Пусть \(n\) – четное. Подставим \(x=-1\) :

    \(a_n\cdot (-1)^n+a_\cdot (-1)^+a_\cdot (-1)^+\dots+a_1\cdot (-1)+a_0=0 \quad\Rightarrow\) \(a_n-a_+a_-\dots-a_1+a_0=0 \quad \Rightarrow\) \(a_n+a_+\dots+a_0=a_+a_+\dots+a_1\)

    2) Случай, когда \(n\) – нечетное, доказывается аналогично.

    Пример

    В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:

    Значит, число \(x=1\) является корнем данного уравнения.

    Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :

    \[\begin x^3+2x^2-8x+5&&\negthickspace\underline<\qquad x-1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 + 3x -5\\[-3pt] 3x^2 — 8x\,\phantom<000>&&\\ \underline<3x^2 - 3x\,>\phantom<000>&&\\[-3pt] -5x + 5&&\\ \underline<-5x +5>&&\\[-3pt] 0&&\\ \end\]

    Таким образом, \(x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2+3x-5=0\) .

    Таким образом мы нашли все корни исходного уравнения.

    Пример

    В уравнении \(x^3-x^2+x+3=0\) сумма коэффициентов при четных степенях \(-1+3=2\) , а при нечетных: \(1+1=2\) . Таким образом, число \(x=-1\) является корнем данного уравнения.

    Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :

    \[\begin x^3-\,x^2+ \ x+3\phantom<0>&&\negthickspace\underline<\qquad x+1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 -2x +3\\[-3pt] -2x^2 + x\phantom<0000>&&\\ \underline<-2x^2 -\! 2x>\,\phantom<000>&&\\[-3pt] 3x + 3&&\\ \underline<3x +3>&&\\[-3pt] 0&&\\ \end\]

    Таким образом, \(x^3-x^2+x+3=(x+1)(x^2 — 2x +3)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2-2x+3=0\) .
    Но это уравнение не имеет корней ( \(D ), значит, исходное уравнение имеет всего один корень \(x=-1\) .

    Замечание

    Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

    Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

    Теорема

    Если алгебраическое уравнение

    \[a_nx^n+a_x^+\dots+a_1x+a_0=0,\] где \(a_n, \dots, a_0\) — целые числа,
    имеет рациональный корень \(x=\dfrac pq\) , то число \(p\) является делителем свободного члена \(a_0\) , а число \(q\) — делителем старшего коэффициента \(a_n\) .

    Пример

    Рассмотрим уравнение \(2x^4-5x^3-x^2-5x-3=0\) .

    В данном случае \(a_0=-3, a_n=2\) . Делители числа \(-3\) — это \(\pm 1, \pm 3\) . Делители числа \(2\) – это \(\pm 1, \pm 2\) . Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

    \[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]

    По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:

    \[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]

    Значит, число \(x=-\frac12\) является корнем уравнения.

    Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения \(x=3\) . Значит, уравнение можно представить в виде

    \[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

    После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :

    получим, что \(P_2(x)=x^2+1\) . Данный многочлен не имеет корней, значит, уравнение имеет только два корня: \(x=-\frac12\) и \(x=3\) .

    Замечание

    Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
    Например, уравнение \(x^3-2=0\) имеет корень — это \(x=\sqrt[3]2\) , и он не рациональный.
    Для подбора иррациональных корней не существует универсального алгоритма.

    Пример

    Найдите корни уравнения \(4x^3-3x^2-\frac<23>6x-1=0\) .

    Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :

    \[24x^3-18x^2-23x-6=0\]
    Делители свободного члена: \(\pm 1, \pm 2, \pm 3, \pm 6\) .
    Делители старшего коэффициента: \(\pm 1, \pm 2, \pm 3, \pm4, \pm 6, \pm 8, \pm 12, \pm 24\) .
    Получилось достаточно много \(:)\)
    Выпишем некоторые возможные рациональные корни уравнения:

    \[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]

    Перебирая варианты, убеждаемся, что \(\frac32\) подходит. Значит, многочлен \(24x^3-18x^2-23x-6\) должен без остатка поделиться на \(x-\frac32\) . Для удобства разделим на \(2(x-\frac32)=2x-3\) (чтобы не работать с дробями):

    Таким образом, \(24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)\) . Уравнение \(12x^2 +9x +2=0\) в свою очередь корней не имеет. Значит, \(x=\frac32\) – единственный корень исходного уравнения.

    Теорема

    Любой многочлен \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) можно разложить на произведение множителей: линейных ( \(ax+b, a\ne 0\) ) и квадратичных ( \(cx^2+px+q, c\ne 0\) ) с отрицательным дискриминантом.

    Следствие

    Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

    Замечание

    На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше \(4\) .

    Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

    Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

    1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
    2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

    Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.


    источники:

    http://ege-ok.ru/2012/08/29/delenie-mnogochlena-na-mnogochlen-stolbikom

    http://shkolkovo.net/theory/kubicheskie_uravneniya_metod_deleniya_v_stolbik_algebraicheskie_uravneniya_stepeni_n_primery