Как доказать что уравнение тождественно равно 0

Тождественно равные выражения: определение, примеры

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны ( 6 и 6 ).

Точно так же тождественно равны выражения 3 и 30 : 10 , ( 2 2 ) 3 и 2 6 (для вычисления значения последнего выражений нужно знать свойства степени).

А вот выражения 4 — 2 и 9 — 1 равными не будут, поскольку их значения разные.

Перейдем к примерам буквенных выражений. Тождественно равными будут a + b и b + a , причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

Например, если a будет равно 4 , а b – 5 , то результаты все равно будут одинаковы.

Еще один пример тождественно равных выражений с буквами – 0 · x · y · z и 0 . Какими бы ни были значения переменных в этом случае, будучи умноженными на 0 , они дадут 0 . Неравные выражения – 6 · x и 8 · x , поскольку они не будут равны при любом x .

В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a + 6 и 6 + a или a · b · 0 и 0 , или x 4 и x , и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a + 8 = 8 + a при любом значении a , и a · b · 0 = 0 тоже, поскольку умножение на 0 любого числа дает в итоге 0 . Выражения x 4 и x будут тождественно равными при любых x из промежутка [ 0 , + ∞ ) .

Но область допустимого значения в одном выражении может отличаться от области другого.

Например, возьмем два выражения: x − 1 и x — 1 · x x . Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x — 1 · x x и x − 1 будут иметь смысл при любых действительных значениях переменных, за исключением 0 .

Основное свойство дроби также позволяет нам заключить, что x — 1 · x x и x − 1 будут равными при любом x, которое не является 0 . Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Тождество. Тождественные преобразования. Примеры.

Тождества в основном применяются для решения линейных уравнений.

Тождеством называется равенство, которое верно при всех значениях переменных.

Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:

В этих выражениях при всех значениях a и b равенство верное.

2 выражения с равными значениями при всех значениях переменных являются тождественно равными.

Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.

Тождественное равенство обозначают символом «≡» (тройное равенство).

Примеры тождеств.

— Тождество Эйлера (кватернионы);

— Тождество Эйлера (теория чисел);

— Тождество четырёх квадратов;

— Тождество восьми квадратов;

Тождественные преобразования.

Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.

Выполним тождественные преобразования с такой дробью: .

Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.

Доказательство тождеств.

Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.

Например, доказать тождество:

Вынесем х за скобки:

Это равенство есть тождество, при х≠0 и х≠1.

Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.

5−1 ≠ 5+1 — подставим, к примеру, 5.

Это равенство не тождество.

Разница между тождеством и уравнением.

Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.

Это выражение верно лишь при х = 10.

Тождеством будет равенство, которое не содержит переменных.

Тождество — принцип, закон и примеры преобразования выражений

Основные законы логики

Логика — это раздел философии. Он представляет собой науку о формах и законах правильного мышления. Закон логики — необходимая связь между логическими формами в процессе построения последовательного рассуждения. Цель его состоит в формулировании правил и рекомендаций, с помощью которых можно найти путь к истине. Это не законы самого окружающего мира, а правила мышления о нём.

Аристотель, который создал классификацию свойств бытия, всесторонне определяющих субъект, впервые сформулировал три из четырёх логических законов и подразумевал под этим предпосылку для объективной связи мыслей в процессе размышления. Основными в формальной логике считаются законы:

  • тождества;
  • исключённого третьего;
  • непротиворечия;
  • достаточного основания.

Без этого закона невозможно установить, что такое логическое следование, и понять смысл доказательства.

Логический принцип тождественности

Тождество — это примерное равенство, сходство объектов по какому-либо показателю. Принцип (синоним слова закон) его — один из основных логических законов формальной логики как науки, в соответствии с которым в процессе размышления любое суждение должно оставаться тождественными самому себе.

Аристотель формулировал это положение так: «Иметь не одно значение — значит, не иметь ни одного значения». В виде формулы этот принцип записывается следующим образом: А есть А или А = А, где А — мысль, которая может быть любой. На этом законе основаны многие положения логики. Например, следующие:

  • пусть установлено: по определённым признакам мысль А тождественна В. Тогда верно и утверждение, что В по тем же признакам тождественна А;
  • если А по какому-то показателю равна В, а В при этом соответствует С, то А будет равна С.

Нарушение закона тождества — пример, который привёл к логической ошибке. Ученик на уроке спрашивает учителя: «Можно наказывать человека за то, чего он не сделал?». «Конечно, нельзя», — отвечает учитель. «В таком случае не наказывайте меня, — говорит ученик, — я не сделал домашнюю работу». В этом диалоге нарушен логический принцип тождества, так как понятие «не сделал» применяется в разных значениях:

  1. Не сделал, то есть не совершил что-то плохое, за что можно наказать.
  2. Не сделал что-то, что должен был выполнить.

Получилось, что в одно и то же понятие было вложено два различных смысла. Нарушение закона может выражаться в следующих формах:

  1. Подмена или потеря предмета мысли.
  2. Намеренное искажение.
  3. Замена тезиса — нетождественность положения, которое пытаются доказать, исходному тезису.

Нарушение закона тождества ведёт к неясности мысли, что совершенно недопустимо во многих областях, например, в юриспруденции. Неточное определение или неправильно истолкованное понятие в сфере права способствует появлению беззакония и произвола, поэтому в процессе мышления принцип тождественности выступает в виде важного правила.

Этот закон вводит требование об отсутствии в ходе размышлений подмены или смешения мысли об объекте или замены предмета мысли. Нужно учитывать, что даже в законодательных актах часто попадаются двусмысленности, а это обязательно приводит к разночтениям в истолковании и неоднозначности в применении.

Виды преобразований

Тождеством в математике называется равенство, которое верно при всех значениях, входящих в него переменных для различных классов функций. Значение этого слова — полное сходство, подобие объектов, явлений друг другу или самим себе. К тождествам можно отнести:

  1. Формулы сокращённого умножения в алгебре.
  2. Тождество параллелограмма. Оно гласит, что сумма квадратов длин сторон параллелограмма равна сумме квадратов длин его диагоналей.
  3. Основное тригонометрическое тождество sin 2 α + cos 2 α = 1, которое связывает квадраты функций синуса и косинуса для любых значений углов.
  4. Тождество Эйлера (комплексный анализ).

Тождество Эйлера — e iπ + 1 = 0 — часто приводят как пример феноменального результата, который устанавливает неочевидную зависимость между геометрией (число пи) и математическим анализом (экспонента). Формула связывает пять фундаментальных математических констант:

  • число e — основание натурального логарифма;
  • i — мнимую единицу;
  • число пи — соотношение длин окружности и диаметра;
  • 1 и 0 — нейтральные элементы по операциям умножения и сложения соответственно.

Тождественным преобразованием называются операции, которые проводятся для замены исходного выражения на тождественно равное. Например, x 3 — xy 2 = x (x — y)(x + y) — это тождество, так как вынесение за скобки общего множителя и применение формул сокращённого умножения являются тождественными преобразованиями. Для демонстрации подставим вместо переменных x и y произвольные значения. Пусть x = 5; y = 4. Получим слева: 125 — 5 x 16 = 45, справа 5 (5 — 4)(5 + 4) = 45. Совпадение обеих частей равенства доказывает тождественность.

Способы доказательства

Равенство и тождество, которое относится к предельному случаю равенства, — это термины, используемые в математике при решении уравнений. Для доказательства тождества нужно сделать тождественные преобразования выражений в одной или обеих частях равенства и получить одинаковые результаты. При выполнении преобразований необходимо обращать внимание на область допустимых значений (ОДЗ) переменных. Эти операции могут суживать ОДЗ или оставлять её прежней.

При переходе от выражения x + (-y) к выражению (x — y) область допустимых значений переменных x и y будет прежняя. Переход от выражения (x — 5) к отношению (x — 5) 2 / (x — 5) приводит к сужению ОДЗ переменной x от (-ꚙ, +ꚙ) до (-ꚙ, 5) U (5, +ꚙ). Способы доказательства:

  1. Применить тождественные преобразования к левой части. Если получится выражение, стоящее в правой части, то тождество считается доказанным.
  2. Преобразовать таким же способом правую часть равенства. Если в результате получится выражение, стоящее в левой части, то доказательство получено.
  3. Сделать тождественные преобразования левой и правой части равенства. Если будет достигнут одинаковый результат, то это служит доказательством тождественности обеих частей.
  4. От правой части равенства отнять левую. Выполнить над разностью равносильные преобразования. Получение в итоге нуля считается доказательством тождественности частей.
  5. Из левой части равенства вычесть правую и произвести над разностью тождественные преобразования. В итоге должен получиться нуль. Тождество будет верным.

В теории множеств для доказательства тождественности часто используются круги или диаграммы Эйлера.

В них графическими методами наглядно можно представить различные операции над множествами: пересечение, объединение, разность, симметрическую разность. Существуют методы построения пересекающихся кругов Эйлера для любого выражения онлайн. Это тоже упрощает доказательство тождественности.

Чтобы доказать нетождественность двух частей выражения, требуется найти хотя бы одно значение переменной из области допустимых значений. При ее подстановке числовые выражения частей получатся неравными друг другу. Разница между уравнением и тождеством заключается в том, что первое может быть выполнено только при некоторых значениях переменных, которые будут его решением, а второе — при всех значениях.

Тождество — это многозначный термин, применяемый в философии, математике, физике. Понятие тождественности уникально по охвату им различной проблематики. С ним сталкиваются и школьники на уроках алгебры и геометрии, и крупные учёные при проведении многочисленных исследований в современной науке.


источники:

http://www.calc.ru/Tozhdestvo-Tozhdestvennyye-Preobrazovaniya-Primery.html

http://nauka.club/filosofiya/tozhdestv%D0%BE.html