Как домножить обе части уравнения

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Рациональные уравнения с примерами решения

    Содержание:

    Рациональные уравнения. Равносильные уравнения

    два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

    Так, например, равносильными будут уравнения

    Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

    Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

    1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

    3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

    Левая и правая части каждого из них являются рациональными выражениями.

    Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

    В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

    Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

    Применение условия равенства дроби нулю

    Напомним, что когда

    Пример №202

    Решите уравнение

    Решение:

    С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:

    Окончательно получим уравнение:

    Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.

    Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.

    Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

    Значит, решая дробное рациональное уравнение, можно:

    1) с помощью тождественных преобразований привести уравнение к виду

    2) приравнять числитель к нулю и решить полученное целое уравнение;

    3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.

    Использование основного свойства пропорции

    Если то где

    Пример №203

    Решите уравнение

    Решение:

    Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.

    Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:

    По основному свойству пропорции имеем:

    Решим это уравнение:

    откуда

    Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

    Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

    Таким образом, для решения дробного рационального уравнения можно:

    1) найти область допустимых значений (ОДЗ) переменной в уравнении;

    2) привести уравнение к виду

    3) записать целое уравнение и решить его;

    4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

    Метод умножения обеих частей уравнения на общий знаменатель дробей

    Пример №204

    Решите уравнение

    Решение:

    Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

    Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение

    Умножим обе части уравнения на это выражение:

    Получим: а после упрощения: то есть откуда или

    Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

    Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

    Решая дробное рациональное уравнение, можно:

    3) умножить обе части уравнения на этот общий знаменатель;

    4) решить полученное целое уравнение;

    5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

    Пример №205

    Являются ли равносильными уравнения

    Решение:

    Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

    Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

    Степень с целым показателем

    Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

    где — натуральное число,

    В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи

    Рассмотрим степени числа 3 с показателями — это соответственно

    В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:

    Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что

    Нулевая степень отличного от нуля числа а равна единице, то есть при

    Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.

    Приходим к следующему определению степени с целым отрицательным показателем:

    если натуральное число, то

    Как домножить обе части уравнения

    Два уравнения называют равносильными, если они имеют одно и тоже множество корней.

    Свойства уравнений
    • Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, равносильное данному.
    • Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, равносильное данному.
    • Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, равносильное данному
    Линейное уравнение

    Уравнение вида , где — переменная, и некоторые числа, называют линейным уравнением с одной переменной.

    Значения и
    Корни уравнения -любое числокорней нет
    Одночлены и многочлены
    Одночлены
    • Выражения, являющиеся произведениями чисел, переменных и их степеней, называют одночленами.
    • Одночлен, содержащий только один отличный от нуля числовой множитель, стоящий на первом месте, а все остальные множители которого — степени с разными основаниями, называют одночленом стандартного вида. К одночленам стандартного вида также относят числа, отличные от нуля, переменные и их степени.
    • Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена.
    • Одночлены, имеющие одинаковые буквенные части, называют подобными. Степенью одночлена называют сумму показателей степеней всех переменных, входящих в него. Степень одночлена, являющегося числом, отличным от нуля, считают равной нулю.
    • Нуль-одночлен степени не имеет.
    Многочлены
    • Выражение, являющееся суммой нескольких одночленов, называют многочленом.
    • Одночлены, из которых состоит многочлен, называют членами многочлена.
    • Одночлен является частным случаем многочлена. Считают, что такой многочлен состоит из одного члена.
    Умножение одночлена на многочлен

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

    Умножение многочлена на многочлен

    Чтобы умножить многочлен на многочлен, можно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.

    Формулы сокращенного умножения
    Разность квадратов двух выражений

    Разность квадратов двух выражений равна произведению разности этих выражений и их суммы:

    Произведение разности и суммы двух выражений

    Произведение разности двух выражений и их суммы равно разности квадратов этих выражений:

    Квадрат суммы и квадрат разности двух выражений

    Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения:

    Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений пл юс квадрат второго выражении:

    Преобразование многочлена в квадрат суммы или разности двух выражений

    позволяют «свернуть» трёхчлен в квадрат двучлена.

    Трёхчлен, который можно представить в виде квадрата двучлена, н а зывают полным квадратом.

    Сумма и разность кубов двух выражений

    Многочлен называют неполным квадратом разности.

    Сумма кубов двух выражений равна произведению суммы этих выр а жений и неполного квадрата их разности:

    Многочлен называют неполным квадратом суммы.

    Разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы:

    Степень. Свойства степени с целым показателем
    Свойства степени с целым показателем

    Для любого и любых целых выполняются равенства:

    Для любых , и любого целого выполняются равенства:

    Функция. Область определения и область значений функции
    Функция

    Правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной, называют функцией, а соответствующую зависимость одной п e ременной от другой — функциональной.
    Обычно независимую переменную обозначают , зависимую обозначают , функцию(правило) — .
    Независимую переменную называют аргументом функции. Значение зависимой переменной называют значением функции.
    Тогда функциональную зависимость обозначают .
    Значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.

    Способы задания функции

    Описательный, табличный, с помощью формулы, графический.

    График функции

    Графиком функции называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.

    Линейная функция, её график и свойства
    • Функцию, которую можно задать формулой вида , где и — некоторые числа, — независимая переменная, называют линейной.
    • Графиком линейной функции является прямая.
    • Линейную функцию, заданную формулой , где , называют прямой пропорциональностью.
    Системы линейных уравнений с двумя переменными
    Уравнение с двумя переменными

    Пару значений переменных, обращающую уравнение с двумя переменными в верное равенство, называют решением уравнения с двумя переменными.

    Решить уравнение с двумя переменными — значит найти все его решения или показать, что оно не имеет решений.

    Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.

    Если некоторая фигура является графиком уравнения, то выполняются два условия:

    • все решения уравнения являются координатами точек, принадлежащих графику;
    • координаты любой точки, принадлежащей графику, — это пара чисел, являющаяся решением данного уравнения.
    Графический метод решения системы двух линейных уравнений с двумя переменными

    Графический метод решения системы уравнений заключается в следующем:

    • построить в одной координатной плоскости графики уравнений, входящих в систему;
    • найти координаты всех точек пересечения построенных графиков;
    • полученные пары чисел и будут искомыми решениями.

    Если графиками уравнений, входящих в систему линейных уравнении, являются прямые, то количество решений этой системы зависит от взаимного расположения двух прямых на плоскости:

    • если прямые пересекаются, то система имеет единственное решение.
    • если прямые совпадают, то система имеет бесконечно много решении.
    • если прямые параллельны, то система решений не имеет.
    Решение системы двух линейных уравнений с двумя переменными методом подстановки

    Чтобы решить систему линейных уравнений методом подстановки, следует:

    • выразить из любого уравнения системы одну переменную через другую;
    • подставить в уравнение системы вместо этой переменной выражение, полученное на первом шаге;
    • решить уравнение с одной переменной, полученное на втором шаге;
    • подставить найденное значение переменной в выражение, полученное на первом шаге;
    • вычислить значение второй переменной;
    • записать ответ.
    Решение систем линейных уравнений методом сложения

    Чтобы решить систему линейных уравнений методом сложения, следует:

    • подобрать такие множители для уравнений, чтобы после преобразований коэффициенты при одной из переменной стали противоположными числами
    • сложить почленно левые и правые части уравнений, полученных на первом шаге
    • решить уравнение с одной переменной, полученной на втором шаге
    • подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы;
    • вычислить значение второй переменной;
    • записать ответ.


    источники:

    http://www.evkova.org/ratsionalnyie-uravneniya

    http://blackseaweb.ru/7klass-algebra/osnovnye-pravila-matematiki-7-klass-algebra-kratko/