Как графически решать уравнения с квадратным корнем

Графически решить уравнение с корнем

Допустим дано такое уравнение:
√x – 0.5x = 0

Требуется решить его графическим способом.

Графический метод решения уравнений заключается в приравнивании двух выражений (частей уравнения), рисования графиков этих выражений-функций на координатной плоскости, нахождения точек пересечения графиков двух функций.

В данном случае преобразуем уравнение к такому виду:
√x = 0.5x

Получаются две функции, чьи графики следует изобразить на координатной плоскости:
f(x) = √x
g(x) = 0.5x

Первый график — это ветвь параболы, вытянутая вдоль оси x. Второй график — прямая.

Как видно из построения, графики функций пересекаются в двух точках: (0; 0) и (4; 2). Нас интересует только координата x. Значит уравнение √x – 0.5x = 0 имеет два корня: x1 = 0 и x2 = 4.

Действительно, если подставить в уравнение определенные по графикам значения x, то левая и правая части уравнения будут равны друг другу.

Решим графически такое уравнение:
√x = (0.6x−3.3) 2 − 4

Здесь в качестве графиков функций имеем параболу и ветвь параболы:

Графики функций, как и в первом случае, пересекаются в двух точках. Однако точно определить точки пересечения нельзя. Можно лишь сказать приблизительно, чему будут равны корни такого уравнения. Одна точка пересечения графиков — это примерно (3; –1.7), вторая точка имеет примерные координаты (7.4; –2.7). Таким образом, x1 ≈ 3, x2 ≈ 7.4.

Следует отметить, что графики функций какого-либо заданного уравнения могут пересекаться только в одной точке. В таком случае, уравнение имеет только один корень. Если графики вообще не пересекаются, то уравнение не имеет корней.

Урок-практикум «Графическое решение уравнений, содержащих функцию y=√х (функцию квадратного корня)». 8-й класс

Разделы: Математика

Класс: 8

Базовый учебник: Алгебра 8 класс. Учебник для общеобразовательных учреждений/ А. Г. Мордкович.

Цель урока: применить алгоритм решения уравнений графически к функции у = .

Задачи:

  • Обучающая: способствовать закреплению знаний свойств функции у = , умение строить график этой функции, использовать алгоритм графического решения уравнений применительно к графику квадратного корня из неотрицательного числа.
  • Развивающая: развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; работа на интерактивной доске, познавательная активность.
  • Воспитывающая: воспитание познавательного интереса к предмету; к самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок практикум.

Методы:

  • словестные: фронтальная работа
  • наглядные алгоритм, графики.
  • практические: индивидуальная, парная и групповая работа, тренировочная самостоятельная работа.

Оборудование: учебник, рабочая тетрадь, раздаточный материал, школьная доска, интерактивная доска.

План урока.

1. Организационный момент. 1 мин

2. Проверка домашнего задания. 5 мин

3. Актуализация знаний. Устная работа с классом. 7 мин

4. Закрепление материала 20 мин

5. Тренировочная самостоятельная работа. 8 мин

6. Постановка домашнего задания. 3 мин

7. Рефлексия. 1 мин

8. Итог урока. 1мин

Ход урока

1. Организационный момент.

2. Проверка домашнего задания. (Учащиеся проверяют домашнюю работу, сверяясь с эталоном, оценивают правильность и полноту выполнения согласно критериям, ставят оценку).

Для №13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2. Из данных утверждений (приложение 1 у каждого ученика) выберите те свойства, которые подходят для функции у = — :

С помощью графика найдите: Слайд 3

а) значения у при х = 1; ; 9; (выборочно)

б) значения х, если у = 0; -2; -4; (выборочно)

в) наименьшее и наибольшее значения функции на отрезке ;

г) при каких значениях х график функции расположен выше прямой у = -2. Ниже прямой у = -2.

3. Актуализация знаний. Устная работа с классом.

1. Принадлежит ли графику функции у = точки

А(2; ); В(1; 0); С(6,25; 2,5); Д(-9; 3).Слайд 4

2. Найдите наименьшее и наибольшее значение функции у = Слайд 5

а) на отрезке ;

б) на полуинтервале [4; 7);

в) на луче [0; )

3. Решите уравнение по заданному графику: х 2 = х +2. Слайд 6

Учащиеся вспоминают (7 класс) алгоритм решения уравнений данного типа, проговаривая, что является корнем уравнения. Как данное задание мы будем применять на уроке.

Ученики говорят тему урока(на доске записана), формулируют цель,

4. Закрепление материала

Задание 1. Итак, повторив алгоритм решения уравнений графически выполним задание № 13.9 (б).

(ученик у доски, остальные в тетради)

= 6 – х;

1) Рассмотрим две функции у = и у = 6 — х

2) Построим график функции у = ,

х014
у012

3) Построим график функции у = 6 – х,

х02
у64

4) По графику устанавливаем, что графики пересекаются в одной точке А(4; 2). Проверим принадлежность данной точки нашим функциям.

Ответ: х = 4. Слайд 7

Задание 2 Решить уравнение графически: два человека у доски остальные на местах выполняют соответственно свои варианты самостоятельно. Совместно устраняют в ходе проверки обнаруженные пробелы (на доске и на листах учеников готовая памятка с построенным графиком линейной функции). Построение графика квадратного корня ученики выполняют самостоятельно. И записывают ответ.

Памятка 1 вариант

а) – = х – 2

х01
у-2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Памятка 2 вариант

б) — = 2 – 3х

х01
у2-1

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Задание 3. Решить графически систему уравнений

(работа выполняется в парах используя приложение № 2)

После выполнения задания учащиеся проверяют свое решение, сравнивая с эталоном. Слайд 8

Встаньте те кто справился с данным заданием.

Физкультминутка для глаз. Слайд 9

Задание 4. Работа в группах(задания дифференцированы, приложение 3): Слайд 10

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек. Слайд 11

Чтобы доказать, что графики функций y = и у = х + 0,5 не имеют общих точек, достаточно их построить.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b Слайд 12

а) Построим график функции y = и будем относительно него передвигать прямые вида y = x + b. Это параллельные прямые, которые образуют острый угол с положительным направлением оси абсцисс.

Таким образом, очевидно, что уравнение = x + b может иметь один, два корня, а может и не иметь корней.

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Прямые вида y = –x + b – это параллельные прямые, которые образуют тупой угол с положительным направлением оси абсцисс.

Получаем, что уравнение = –x + b имеет либо один корень, либо не имеет корней.

Обсуждение решений каждой группы.( Для готовых графиков квадратного корня на интерактивной доске учащиеся показывают свои решения)

5. Тренировочная самостоятельная работа.

В а р и а н т 1

1 . По графику функции у = найдите:

а) значение функции при х = 3, у =____

б) значение аргумента, которому соответствует значение y = 1,8; х = _____

2. Принадлежит ли графику функции y = точка:

а) А (36; 6); ______ б) В (–9; 3)_______?

3. Решите уравнение графически — = — х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

В а р и а н т 2

1. По графику функции y = найдите:

а) значение функции при х = 5; у =

б) значение аргумента, которому соответствует значение у = 1,5; х =

2. Принадлежит ли графику функции y = — точка:

а) А (81; -9)______ б) В (–16; 4)_______

3. Решите уравнение графически = х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

Проверяем работу с помощью эталона. Слайд 13 Выясняем проблемы по данной теме.

6. Постановка домашнего задания.

№ 13.9(г), № 13.11(г), № 13.16(рис 7 опишите свойства функции)

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

8. Итог урока.

Урок я хочу закончить словами древнегреческого ученого Фалеса:

Что быстрее всего? – Ум

Что мудрее всего? – Время

Что приятнее всего? Достичь желаемого.

Я думаю, мы с вами достигли желаемого? Еще раз вспомнли функцию квадратного корня из неотрицательного числа и применили алгоритм решения уравнения графически к этой функции. Но ребята, кроме у = в дальнейшем мы будем рассматривать более сложные функции, например у = у = -1 у = +5.

Так что перспектива развития ваших знаний велика. Дерзайте.

Приложение № 1

Для номера 13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2

Из данных утверждений выберите те свойства, которые подходят для функции у = — :

  1. Область определения функции – луч [0; + )
  2. Область определения функции – луч ( + ; 0]
  3. у = 0 при х = 0, у 0
  4. Функция убывает на луче [0; + )
  5. Функция возрастает на луче [0; + )
  6. унаиб = 0, унаим не существует
  7. Функция непрерывна на луче [0; + )
  8. Область значения функции – луч [0; + )
  9. Область значения функции – луч (- ; 0]
  10. Функция выпукла вниз.
  11. Функция выпукла вверх.

Приложение 2

Работа в парах Задание № 3

Решите графически систему уравнений:

Приложение 3

Работа в группах Задание № 4

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Решение квадратных неравенств графически

Графический метод является одним из основных методов решения квадратных неравенств. В статье мы приведем алгоритм применения графического метода, а затем рассмотрим частные случаи на примерах.

Суть графического метода

Метод применим для решения любых неравенств, не только квадратных. Суть его вот в чем: правую и левую части неравенства рассматривают как две отдельные функции y = f ( x ) и y = g ( x ) , их графики строят в прямоугольной системе координат и смотрят, какой из графиков располагается выше другого, и на каких промежутках. Оцениваются промежутки следующим образом:

  • решениями неравенства f ( x ) > g ( x ) являются интервалы, где график функции f выше графика функции g ;
  • решениями неравенства f ( x ) ≥ g ( x ) являются интервалы, где график функции f не ниже графика функции g ;
  • решениями неравенства f ( x ) g ( x ) являются интервалы, где график функции f ниже графика функции g ;
  • решениями неравенства f ( x ) ≤ g ( x ) являются интервалы, где график функции f не выше графика функции g ;
  • абсциссы точек пересечения графиков функций f и g являются решениями уравнения f ( x ) = g ( x ) .

Рассмотрим приведенный выше алгоритм на примере. Для этого возьмем квадратное неравенство a · x 2 + b · x + c 0 ( ≤ , > , ≥ ) и выведем из него две функции. Левая часть неравенства будет отвечать y = a · x 2 + b · x + c (при этом f ( x ) = a · x 2 + b · x + c ) , а правая y = 0 (при этом g ( x ) = 0 ).

Графиком первой функции является парабола, второй прямая линия, которая совпадает с осью абсцисс О х . Проанализируем положение параболы относительно оси О х . Для этого выполним схематический рисунок.

Решение с двумя корнями у квадратного трехчлена

Ветви параболы направлены вверх. Она пересекает ось О х в точках x 1 и x 2 . Коэффициент а в данном случае положительный, так как именно он отвечает за направление ветвей параболы. Дискриминант положителен, что указывает на наличие двух корней у квадратного трехчлена a · x 2 + b · x + c . Корни трехчлена мы обозначили как x 1 и x 2 , причем приняли, что x 1 x 2 , так как на оси О х изобразили точку с абсциссой x 1 левее точки с абсциссой x 2 .

Части параболы, расположенные выше оси О х обозначим красным, ниже – синим. Это позволит нам сделать рисунок более наглядным.

Выделим промежутки, которые соответствуют этим частям и отметим их на рисунке полями определенного цвета.

Красным мы отметили промежутки ( − ∞ , x 1 ) и ( x 2 , + ∞ ) , на них парабола выше оси О х . Они являются решением квадратного неравенства a · x 2 + b · x + c > 0 . Синим мы отметили промежуток ( x 1 , x 2 ) , который является решением неравенства a · x 2 + b · x + c 0 . Числа x 1 и x 2 будут отвечать равенству a · x 2 + b · x + c = 0 .

Сделаем краткую запись решения. При a > 0 и D = b 2 − 4 · a · c > 0 (или D ‘ = D 4 > 0 при четном коэффициенте b ) мы получаем:

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является ( − ∞ , x 1 ) ∪ ( x 2 , + ∞ ) или в другой записи x x 1 , x > x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является ( − ∞ , x 1 ] ∪ [ x 2 , + ∞ ) или в другой записи x ≤ x 1 , x ≥ x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c 0 является ( x 1 , x 2 ) или в другой записи x 1 x x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≤ 0 является [ x 1 , x 2 ] или в другой записи x 1 ≤ x ≤ x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a · x 2 + b · x + c , причем x 1 x 2 .

Решение с одним корнем у квадратного трехчлена

На данном рисунке парабола касается оси O х только в одной точке, которая обозначена как x 0 . Ветви параболы направлены вверх, что означает, что a > 0 . D = 0 , следовательно, квадратный трехчлен имеет один корень x 0 .

Парабола расположена выше оси O х полностью, за исключением точки касания координатной оси. Обозначим цветом промежутки ( − ∞ , x 0 ) , ( x 0 , ∞ ) .

Запишем результаты. При a > 0 и D = 0 :

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является ( − ∞ , x 0 ) ∪ ( x 0 , + ∞ ) или в другой записи x ≠ x 0 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является ( − ∞ , + ∞ ) или в другой записи x ∈ R ;
  • квадратное неравенство a · x 2 + b · x + c 0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси O x );
  • квадратное неравенство a · x 2 + b · x + c ≤ 0 имеет единственное решение x = x 0 (его дает точка касания),

где x 0 — корень квадратного трехчлена a · x 2 + b · x + c .

Решение квадратного трехчлена, не имеющего корней

Рассмотрим третий случай, когда ветви параболы направлены вверх и не касаются оси O x . Ветви параболы направлены вверх, что означает, что a > 0 . Квадратный трехчлен не имеет действительных корней, так как D 0 .

На графике нет интервалов, на которых парабола была бы ниже оси абсцисс. Это мы будем учитывать при выборе цвета для нашего рисунка.

Получается, что при a > 0 и D 0 решением квадратных неравенств a · x 2 + b · x + c > 0 и a · x 2 + b · x + c ≥ 0 является множество всех действительных чисел, а неравенства a · x 2 + b · x + c 0 и a · x 2 + b · x + c ≤ 0 не имеют решений.

Нам осталось рассмотреть три варианта, когда ветви параболы направлены вниз. На этих трех вариантах можно не останавливаться подробно, так как при умножении обеих частей неравенства на − 1 мы получаем равносильное неравенство с положительным коэффициентом при х 2 .

Алгоритм решения неравенств с использованием графического способа

Рассмотрение предыдущего раздела статьи подготовило нас к восприятию алгоритма решения неравенств с использованием графического способа. Для проведения вычислений нам необходимо будет каждый раз использовать чертеж, на котором будет изображена координатная прямая O х и парабола, которая отвечает квадратичной функции y = a · x 2 + b · x + c . Ось O у мы в большинстве случаев изображать не будем, так как для вычислений она не нужна и будет лишь перегружать чертеж.

Для построения параболы нам необходимо будет знать две вещи:

  • направление ветвей, которое определяется значением коэффициента a ;
  • наличие точек пересечения параболы и оси абсцисс, которые определяются значением дискриминанта квадратного трехчлена a · x 2 + b · x + c .

Точки пересечения и касания мы будет обозначать обычным способом при решении нестрогих неравенств и пустыми при решении строгих.

Наличие готового чертежа позволяет перейти к следующему шагу решения. Он предполагает определение промежутков, на которых парабола располагается выше или ниже оси O х . Промежутки и точки пересечения и являются решением квадратного неравенства. Если точек пересечения или касания нет и нет интервалов, то считается, что заданное в условиях задачи неравенство не имеет решений.

Теперь решим несколько квадратных неравенств, используя приведенный выше алгоритм.

Необходимо решить неравенство 2 · x 2 + 5 1 3 · x — 2 графическим способом.

Решение

Нарисуем график квадратичной функции y = 2 · x 2 + 5 1 3 · x — 2 . Коэффициент при x 2 положительный, так как равен 2 . Это значит, что ветви параболы будут направлены вверх.

Вычислим дискриминант квадратного трехчлена 2 · x 2 + 5 1 3 · x — 2 для того, чтобы выяснить, имеет ли парабола с осью абсцисс общие точки. Получаем:

D = 5 1 3 2 — 4 · 2 · ( — 2 ) = 400 9

Как видим, D больше нуля, следовательно, у нас есть две точки пересечения: x 1 = — 5 1 3 — 400 9 2 · 2 и x 2 = — 5 1 3 + 400 9 2 · 2 , то есть, x 1 = − 3 и x 2 = 1 3 .

Мы решаем нестрогое неравенство, следовательно проставляем на графике обычные точки. Рисуем параболу. Как видите, рисунок имеет такой же вид как и в первом рассмотренном нами шаблоне.

Наше неравенство имеет знак ≤ . Следовательно, нам нужно выделить промежутки на графике, на которых парабола расположена ниже оси O x и добавить к ним точки пересечения.

Нужный нам интервал − 3 , 1 3 . Добавляем к нему точки пересечения и получаем числовой отрезок − 3 , 1 3 . Это и есть решение нашей задачи. Записать ответ можно в виде двойного неравенства: − 3 ≤ x ≤ 1 3 .

Ответ: − 3 , 1 3 или − 3 ≤ x ≤ 1 3 .

Решите квадратное неравенство − x 2 + 16 · x − 63 0 графическим методом.

Решение

Квадрат переменной имеет отрицательный числовой коэффициент, поэтому ветви параболы будут направлены вниз. Вычислим четвертую часть дискриминанта D ‘ = 8 2 − ( − 1 ) · ( − 63 ) = 64 − 63 = 1 . Такой результат подсказывает нам, что точек пересечения будет две.

Вычислим корни квадратного трехчлена: x 1 = — 8 + 1 — 1 и x 2 = — 8 — 1 — 1 , x 1 = 7 и x 2 = 9 .

Получается, что парабола пересекает ось абсцисс в точках 7 и 9 . Отметим эти точки на графике пустыми, так как мы работаем со строгим неравенством. После этого нарисуем параболу, которая пересекает ось O х в отмеченных точках.

Нас будут интересовать промежутки, на которых парабола располагается ниже оси O х . Отметим эти интервалы синим цветом.

Получаем ответ: решением неравенства являются промежутки ( − ∞ , 7 ) , ( 9 , + ∞ ) .

Ответ: ( − ∞ , 7 ) ∪ ( 9 , + ∞ ) или в другой записи x 7 , x > 9 .

В тех случаях, когда дискриминант квадратного трехчлена равен нулю, необходимо внимательно подходить к вопросу о том, стоит ли включать в ответ абсциссы точки касания. Для того, чтобы принять правильное решение, необходимо учитывать знак неравенства. В строгих неравенствах точка касания оси абсцисс не является решением неравенства, в нестрогих является.

Решите квадратное неравенство 10 · x 2 − 14 · x + 4 , 9 ≤ 0 графическим методом.

Решение

Ветви параболы в данном случае будут направлены вверх. Она будет касаться оси O х в точке 0 , 7 , так как

Построим график функции y = 10 · x 2 − 14 · x + 4 , 9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0 , 7 , так как D ‘ = ( − 7 ) 2 − 10 · 4 , 9 = 0 , откуда x 0 = 7 10 или 0 , 7 .

Поставим точку и нарисуем параболу.

Мы решаем нестрогое неравенство со знаком ≤ . Следовательно. Нас будут интересовать промежутки, на которых парабола располагается ниже оси абсцисс и точка касания. На рисунке нет интервалов, которые удовлетворяли бы нашим условиям. Есть лишь точка касания 0 , 7 . Это и есть искомое решение.

Ответ: Неравенство имеет только одно решение 0 , 7 .

Решите квадратное неравенство – x 2 + 8 · x − 16 0 .

Решение

Ветви параболы направлены вниз. Дискриминант равен нулю. Точка пересечения x 0 = 4 .

Отмечаем точку касания на оси абсцисс и рисуем параболу.

Мы имеем дело со строгим неравенством. Следовательно, нас интересуют интервалы, на которых парабола расположена ниже оси O х . Отметим их синим.

Точка с абсциссой 4 не является решением, так как в ней парабола не расположена ниже оси O x . Следовательно, мы получаем два интервала ( − ∞ , 4 ) , ( 4 , + ∞ ) .

Ответ: ( − ∞ , 4 ) ∪ ( 4 , + ∞ ) или в другой записи x ≠ 4 .

Не всегда при отрицательном значении дискриминанта неравенство не будет иметь решений. Есть случаи, когда решением будет являться множество всех действительных чисел.

Решите квадратное неравенство 3 · x 2 + 1 > 0 графическим способом.

Решение

Коэффициент а положительный. Дискриминант отрицательный. Ветви параболы будут направлены вверх. Точек пересечения параболы с осью O х нет. Обратимся к рисунку.

Мы работаем со строгим неравенством, которое имеет знак > . Это значит, что нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это как раз тот случай, когда ответом является множество всех действительный чисел.

Ответ: ( − ∞ , + ∞ ) или так x ∈ R .

Необходимо найти решение неравенства − 2 · x 2 − 7 · x − 12 ≥ 0 графическим способом.

Решение

Ветви параболы направлены вниз. Дискриминант отрицательный, следовательно, общих точек параболы и оси абсцисс нет. Обратимся к рисунку.

Мы работаем с нестрогим неравенством со знаком ≥ , следовательно, интерес для нас представляют промежутки, на которых парабола располагается выше оси абсцисс. Судя по графику, таких промежутков нет. Это значит, что данное у условии задачи неравенство не имеет решений.


источники:

http://urok.1sept.ru/articles/659649

http://zaochnik.com/spravochnik/matematika/kvadratnye-neravenstva/reshenie-kvadratnyh-neravenstv-graficheski/