Как из этилена получить ацетилен уравнение

ПОЛУЧЕНИЕ ЭТИЛЕНА И АЦЕТИЛЕНА

И ИЗУЧЕНИЕ ИХ СВОЙСТВ

Теоретическая часть

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Простейшим представителем алкенов является этилен СН2=СН2.

Этилен — бесцветный газ, почти без запаха, немного легче воздуха, плохо растворим в воде.

1. Этилен в лаборатории получают при нагревании смеси этилового спирта с концентрированной серной кислотой:

2. Углеводороды ряда этилена можно получить также дегидрированием предельных углеводородов:

3. На производстве этилен получают из природного газа и при процессах пиролиза нефти.

4. Углеводороды ряда этилена можно получить при взаимодействии дигалогенопроизводных предельных углеводородов с металлами:

5. При действии спиртовых растворов щелочей на галогенопроизводные отщепляется галогеноводород и образуется углеводород с двойной связью:

Химические свойства этилена и его гомологов в основном определяются наличием в их молекулах двойной связи. Для них характерны реакции присоединения, окисления и полимеризации.

1. Реакции присоединения.

o Этилен и его гомологи взаимодействуют с галогенами. Так, например, они обесцвечивают бромную воду:
H2C = CH2 + Br2 → CН2Br — CH2Br

o Аналогично происходит присоединение водорода (гидрирование этилена и его гомологов):

o В присутствии серной или ортофосфорной кислоты и других катализаторов этилен присоединяет воду (реакция гидратации). Этой реакцией пользуются для получения этилового спирта в промышленности:

o Этилен и его гомологи присоединяют также галогеноводороды. Пропилен и последующие углеводороды ряда этилена реагируют с галогеноводородами согласно правилу В.В.Марковникова.

Водород присоединяется к наиболее, а атом галогена — к наименее гидрированному атому углерода:
H2C = CH2 + НBr → CН3 – CH2Br

2. Реакции окисления.

o Этилен и его гомологи способны гореть на воздухе. С воздухом этилен и его газообразные гомологи образуют взрывчатые смеси:

o Этилен и его гомологи легко окисляются, например кислородом перманганата калия; при этом раствор последнего обесцвечивается:

3. Реакции полимеризации.
При повышенной температуре, давлении и в присутствии катализаторов молекулы этилена соединяются друг с другом вследствие развала двойной связи:


Процесс соединения многих одинаковых молекул в более крупные называется реакцией полимеризации.

Алкинами называются ненасыщенные углеводороды, молекулы которых содержат одну тройную связь. Простейшим представителем алкинов является этин (ацетилен) СН≡СН.

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С4) — газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, лучше — в органических растворителях. Плохо растворимы в воде.

Способы получения алкинов.

1. Пиролиз метана.

2. Карбидный способ.

а) СаО + 3С → СаС2 + СО

3. Дегидрогалогенирование дигалойдных углеводородов спиртовыми растворами щелочей.

СН3 – СН(Вr) – СН2Br + 2КОН → СН3 – С ≡ СН + 2КВr + 2Н2О

4. Каталитическое дегидрирование этиленовых углеводородов.

1. Реакции присоединения.

a. Ацетилен и его гомологи взаимодействуют с галогенами. Так, например, они обесцвечивают бромную воду:
HC ≡ CH + 2Br2 → CНBr2 — CHBr2

b. Аналогично происходит присоединение водорода (гидрирование этина и его гомологов):

c. Этин и его гомологи присоединяют также галогеноводороды. Пропин и последующие углеводороды ряда этина реагируют с галогеноводородами согласно правилу В.В.Марковникова.

Водород присоединяется к наиболее, а атом галогена — к наименее гидрированному атому углерода:
C2H2 + 2НBr → C2H4Br2

2. Реакции окисления.

a. Этин и его гомологи способны гореть на воздухе. С воздухом этин и его газообразные гомологи горят бледно-голубым пламенем:

b. Этилен и его гомологи легко окисляются, например кислородом перманганата калия; при этом раствор последнего обесцвечивается:

Экспериментальная часть

ЦЕЛЬ РАБОТЫ: получить и изучить свойства этилена и ацетилена.

ОБОРУДОВАНИЕ И РЕАКТИВЫ: штатив с пробирками, пробка с газоотводной трубкой, спиртовка, держатель для пробирок, этиловый спирт, концентрированная серная кислота, бромная вода, раствор перманганата калия, карбид кальция.

ОПЫТ 1. ПОЛУЧЕНИЕ ЭТИЛЕНА И ЕГО ГОРЕНИЕ.

В пробирку налейте 2-3 мл этилового спирта и осторожно добавьте 6-9 мл концентрированной серной кислоты и несколько крупинок песка. Закройте пробирку пробкой с газоотводной трубкой, закрепите ее в штативе и осторожно нагрейте. Подожгите выделяющийся газ.

Какой газ выделяется при нагревании смеси этилового спирта с серной кислотой? Почему этилен горит более светящимся пламенем, чем метан? Напишите уравнение реакции.

ОПЫТ 2. ВЗАИМОДЕЙСТВИЕ ЭТИЛЕНА С БРОМНОЙ ВОДОЙ.

В другую пробирку налейте 2-3 мл бромной воды. Не прекращая нагревания пробирки со смесью спирта и серной кислоты, опустите конец газоотводной трубки в пробирку с бромной водой и пропустите через нее выделяющийся газ.

Что происходит при пропускании газа через бромную воду? Напишите уравнение реакции.

ОПЫТ 3. ОТНОШЕНИЕ ЭТИЛЕНА К ОКИСЛИТЕЛЯМ.

В третью пробирку налейте 2-3 мл разбавленного раствора перманганата калия. Не прекращая нагревания пробирки со смесью спирта и серной кислоты, опустите конец газоотводной трубки в пробирку с раствором перманганата калия и пропустите через нее выделяющийся газ.

Что происходит при пропускании газа через раствор перманганата калия? Напишите уравнение реакции.

ОПЫТ 4. ПОЛУЧЕНИЕ АЦЕТИЛЕНА И ЕГО ГОРЕНИЕ.

В пробирку поместите маленький кусочек карбида кальция и добавьте 2 капли воды. Закройте пробирку пробкой с газоотводной трубкой. Подожгите выделяющийся газ.

Какой газ выделяется? Почему ацетилен горит более светящимся пламенем, чем метан? Напишите уравнение реакции.

ОПЫТ 5. ВЗАИМОДЕЙСТВИЕ АЦЕТИЛЕНА С БРОМНОЙ ВОДОЙ.

В другую пробирку налейте 2-3 мл бромной воды. В пробирку с карбидом кальция добавьте еще 2 капли воды и закройте ее пробкой с газоотводной трубкой. Опустите конец газоотводной трубки в пробирку с бромной водой и пропустите через нее выделяющийся газ.

Что происходит при пропускании газа через бромную воду? Напишите уравнение реакции.

ОПЫТ 6. ОТНОШЕНИЕ АЦЕТИЛЕНА К ОКИСЛИТЕЛЯМ.

В третью пробирку налейте 2-3 мл разбавленного раствора перманганата калия. В пробирку с карбидом кальция добавьте еще 2 капли воды и закройте ее пробкой с газоотводной трубкой. Опустите конец газоотводной трубки в пробирку с бромной водой и пропустите через нее выделяющийся газ.

Что происходит при пропускании газа через раствор перманганата калия? Напишите уравнение реакции.

Задания.

1. Какие углеводороды называются непредельными?

2. Какие углеводороды называются алкенами и алкинами?

4. Какие типы химических реакций характерны для непредельных углеводородов? Приведите примеры.

5. Какие реакции являются качественными реакциями на непредельные углеводороды?

ЛАБОРАТОРНАЯ РАБОТА № 12

СПИРТЫ

Теоретическая часть

Одноатомные спирты – это производные углеводородов, в которых один атом водорода замещен на гидрокси- группу. Общая формула спиртов – CnH2n+1OH.

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от одного до одиннадцати атомов углерода, — жидкости. Высшие спирты (начиная с С12Н25ОН) при комнатной температуре — твёрдые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, например октанол уже не смешивается с водой.

1. Самый общий способ получения спиртов, имеющий промышленное значение, — гидратация алкенов. Реакция идет при пропускании алкена с парами воды над фосфорно­кислым катализатором:

Из этилена получается этиловый спирт, из пропена — изопропиловый. Присоединение воды идет по правилу Марковникова, поэтому из первичных спиртов по данной реакции можно полу­чить только этиловый спирт.

2. Другой общий способ получения спиртов — гидролиз алкилгалогенидов под действием водных растворов щелочей:

R—Br + NaOH → R—OH + NaBr.

По этой реакции можно получать первичные, вторичные и третичные спирты.

3. Восстановление карбонильных соединений. При восстановлении альдегидов образуются первичный спирты, при восстановлении кетонов — вторичные:

Реакцию проводят, пропуская смесь паров альдегида или кетона и водорода над никелевым катализатором.

5. Этанол получают при спиртовом брожении глюкозы:

Химические свойства спиртов определяются присутствием в их молекулах гидроксильной группы ОН. Связи С-О и О-Н сильно полярны и способны к разрыву. Различают два основных типа реакций спиртов с участием функциональной группы -ОН:

1) Реакции с разрывом связи О-Н: а) взаимодействие спиртов с щелочными и щелочноземельными металлами с образованием алкоголятов; б) реакции спиртов с органическими и минеральны­ми кислотами с образованием сложных эфиров; в) окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений. Скорость реакций, при которых раз­рывается связь О-Н, уменьшается в ряду: первичные спирты > вторичные > третичные.

2) Реакции сопровождающиеся разрывом связи С-О: а) каталитическая дегидратация с образованием алкенов (внутримолекулярная дегидратация) или простых эфиров (межмолекулярная дегидратация): б) замещение группы -ОН галогеном, например при действии галогеноводородов с образова­нием алкилгалогенидов. Скорость реакций, при которых разры­вается связь С-О, уменьшается в ряду: третичные спирты > вторичные > первичные.

Спирты являются амфотерными соединениями.

Реакции с разрывом связи О-Н.

1. Кислотные свойства спиртов выражены очень слабо. Низшие спирты бурно реагируют со щелочными металлами:

но не реагируют с щелочами. С увеличением длины углеводород­ного радикала скорость этой реакции замедляется.

В присутствии следов влаги соли спиртов (алкоголяты) разла­гаются до исходных спиртов:

Это доказывает, что спирты — более слабые кислоты, чем вода.

2. При действии на спирты минеральных и органических кислот образуются сложные эфиры. Образование сложных эфиров протекает по механизму нуклеофильного присоединения-отщепления:

Отличительной особенностью первой из этих реакций является то, что атом водорода отщепляется от спирта, а группа ОН — от кислоты. (Установлено экспериментально методом «меченых атомов» ).

3. Спирты окисляются под действием дихромата или перманганата калия до карбонильных соединений. Первичные спирты окисляются в альдегиды, которые, в свою очередь, могут окисляться в карбоновые кислоты:

Вторичные спирты окисляются в кетоны. Третичные спирты могут окисляться только с разрывом С-С связей.

Реакции с разрывом связи С-О.

1) Реакции дегидратации протекают при нагревании спиртов с водоотнимающими веществами. При сильном нагревании происходит внутримолекулярная дегидратация с образованием алкенов:

При более слабом нагревании происходит межмолекулярная дегидратация с образованием простых эфиров:

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Алкины

Алкины — непредельные (ненасыщенные) углеводороды, имеющие в молекуле одну тройную связь С≡С. Каждая такая связь содержит одну сигма-связь (σ-связь) и две пи-связи (π-связи).

Алкины также называют ацетиленовыми углеводородами. Первый член гомологического ряда — этин — CH≡CH (ацетилен). Общая формула их гомологического ряда — CnH2n-2.

Номенклатура и изомерия алкинов

Названия алкинов формируются путем добавления суффикса «ин» к названию алкана с соответствующим числом: этин, пропин, бутин и т.д.

При составлении названия алкина важно учесть, что главная цепь атомов углерода должна обязательно содержать тройную связь. Нумерация атомов углерода в ней начинается с того края, к которому ближе тройная связь. В конце названия указывают атом углерода у которых начинается тройная связь.

Для алкинов характерна изомерия углеродного скелета, положения тройной связи, межклассовая изомерия с алкадиенами.

Пространственная геометрическая изомерия для них невозможна, ввиду того, что каждый атом углерода, прилежащий к тройной связи, соединен только с одним единственным заместителем.

Некоторые данные, касающиеся алкинов, надо выучить:

  • В молекулах алкинов присутствуют тройные связи, длина которых составляет 0,121 нм
  • Тип гибридизации атомов углерода — sp
  • Валентный угол (между химическими связями) составляет 180°
Получение алкинов

Ацетилен получают несколькими способами:

    Пиролиз метана

При нагревании метана до 1200-1500 °C происходит димеризация молекул метана, в ходе чего отщепляется водород.

Осуществляется напрямую, из простых веществ. Протекает на вольтовой (электрической) дуге, в атмосфере водорода.

2C + H2 → (t, вольтова дуга) CH≡CH

Разложение карбида кальция

В результате разложения карбида кальция образуется ацетилен и гидроксид кальция II.

Получение гомологов ацетилена возможно в реакциях дегидрогалогенирования дигалогеналканов, в которых атомы галогена расположены у одного атома углерода или у двух соседних атомов.

Химические свойства алкинов

Алкины — ненасыщенные углеводороды, легко вступающие в реакции присоединения. Реакции замещения для них не характерны.

Водород присоединяется к атомам углерода, образующим тройную связь. Пи-связи (π-связи) рвутся, остается единичная сигма-связь (σ-связь).

CH≡C-CH3 + H2 → (t, Ni) CH2=CH-CH3 (в реакции участвует 1 моль водорода)

CH≡CH + 2H2 → (t, Ni) CH3-CH3 (в реакции участвует 2 моль водорода)

Реакция с бромной водой является качественной для непредельных соединений, содержащих двойные (и тройные) связи. В ходе такой реакции бромная вода обесцвечивается, что указывает на присоединение его по кратным связям к органическому веществу.

Алкины вступают в реакции гидрогалогенирования, протекающие по типу присоединения.

Гидрогалогенирование протекает по правилу Марковникова, в соответствии с которым атом водорода присоединяется к наиболее гидрированному, а атом галогена — к наименее гидрированному атому углерода.

Реакцией Кучерова называют гидратацию ацетиленовых соединений с образованием карбонильных соединений. Открыта русским химиком М.Г. Кучеровым в 1881 году. Катализатор — соли ртути Hg 2+ .

Только в реакции с ацетиленом образуется уксусный альдегид. Во всех остальных реакциях (с гомологами ацетилена) образуются кетоны.

При горении алкины, как и все органические соединения, сгорают с образование углекислого газа и воды — полное окисление.

Сильные окислители (особенно в подкисленной среде) способны разрывать молекулы алкинов в самом слабом месте — в месте тройной связи.

Так, при окислении пропина, образуется уксусная кислота и муравьиная кислота, окисляющаяся до угольной кислоты, которая распадается на углекислый газ и воду.

Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический углеводород — бензол.

Димеризация ацетилена происходит при наличии катализатора — солей меди I. В результате реакции две молекулы ацетилена соединяются, образуя винилацетилен.

В случае если тройная связь прилежит к краевому атому углерода, то имеющийся у данного атома водород может быть замещен атомом металла. Если тройная связь спрятана внутри молекулы, то образование солей невозможно.

Реакция аммиачного раствора серебра и ацетилена — качественная реакция, в ходе которой выпадает осадок ацетиленида серебра.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


источники:

http://acetyl.ru/o/a21d2d.php

http://studarium.ru/article/185