Как из h2so4 получить na2so4 уравнение реакции

Сульфат натрия: способы получения и химические свойства

Сульфат натрия — соль щелочного металла натрия и серной кислоты. Белый. Плавится и кипит без разложения. Хорошо растворяется в воде (гидролиз не идет).

Относительная молекулярная масса Mr = 142,04; относительная плотность для тв. и ж. состояния d = 2,66; tпл = 884º C; tкип = 1430º C.

Способ получения

1. В результате взаимодействия разбавленной серной кислоты и гидроксида натрия образуется сульфат натрия и вода:

2. При температуре 450–800º C гидросульфат натрия реагирует с хлоридом натрия. В результате реакции образуется сульфат натрия и хлороводородная кислота:

NaHSO4 + NaCl = Na2SO4 + HCl

3. В состоянии кипения в результате реакции между твердым хлоридом натрия и концентрированной серной кислотой происходит образование сульфата натрия и газа хлороводорода:

4. Твердый сульфид натрия и кислород взаимодействуют при температуре выше 400º C с образованием сульфата натрия:

5. При взаимодействии концентрированного раствора пероксида водорода и сульфида натрия образуется сульфат натрия и вода:

Качественная реакция

Качественная реакция на сульфат натрия — взаимодействие его с хлоридом бария, в результате реакции происходит образование белого осадка , который не растворим в азотной кислоте:

1. При взаимодействии с хлоридом бария , сульфат натрия образует сульфат бария и хлорид натрия:

Химические свойства

1. Сульфат натрия может реагировать с простыми веществами :

1.1. Сульфат натрия реагирует со фтором при температуре 100–150º C. При этом образуются фторид натрия, сульфурилфторид и кислород:

1.2. С водородом сульфат натрия реагирует при температуре 550–600º C, в присутствии катализатора Fe2O3 с образованием сульфида натрия и воды:

2. Сульфат натрия вступает в реакцию со многими сложными веществами :

2.1. Сульфат натрия реагирует с гидроксидом бария с образованием гидроксида натрия и сульфата бария:

2.2. При взаимодействии с концентрированной серной кислотой твердый сульфат натрия образует гидросульфат натрия:

2.3. Сульфат натрия реагирует с оксидом серы (VI) . Взаимодействие сульфата натрия с оксидом серы (VI) приводит к образованию пиросульфата натрия:

2.4. Сульфат натрия взаимодействует с хлоридом бария . При этом образуются хлорид натрия и сульфат бария:

Серная кислота (H2SO4)

Молекула серной кислоты имеет крестовидную форму:

Физические свойства серной кислоты:

  • плотная маслянистая жидкость без цвета и запаха;
  • плотность 1,83 г/см 3 ;
  • температура плавления 10,3°C;
  • температура кипения 296,2°C;
  • очень гигроскопична, смешивается с водой в любых отношениях;
  • при растворении концентрированной серной кислоты в воде происходит выделение большого кол-ва тепла ( ВАЖНО ! Приливают кислоту в воду! Воду в кислоту приливать нельзя. )

Серная кислота бывает двух видов:

  • разбавленная H2SO4(разб) — водный раствор кислоты, в котором процентное содержание H2SO4 не превышает 70%;
  • концентрированная H2SO4(конц) — водный раствор кислоты, в котором процентное содержание H2SO4 превышает 70%;

Химические свойства H2SO4

Серная кислота полностью диссоциирует в водных растворах в две ступени:

Разбавленная серная кислота проявляет все характерные свойства сильных кислот, вступая в реакции:

  • с основными оксидами:
  • с основаниями:
  • с солями:

В окислительно-восстановительных реакциях серная кислота выступает в роли окислителя, при этом, в разбавленной H2SO4 роль окислителей играют катионы водорода (H + ), а в концентрированной — сульфат-ионы (SO4 2- ) (более сильные окислители, чем катионы водорода).

  • разбавленная серная кислота:
    H2 +1 S +6 O4 -2
    окислитель H + : 2H + +2e — → H2 0 ↑
  • концентрированная серная кислота:
    H2 +1 S +6 O4 -2
    окислитель S +6 :
    • S +6 +2e — → S +4 (SO2)
    • S +6 +6e — → S 0 (S)
    • S +6 +8e — → S -2 (H2S)

Разбавленная серная кислота реагирует с металлами, стоящими в электрохимическом ряду напряжений левее водорода (реакция проходит с образованием сульфатов и выделением водорода):

С металлами, стоящими правее водорода (медь, серебро, ртуть, золото), разбавленная серная кислота не реагирует.

Концентрированная серная кислота является более сильным окислителем, особенно это проявляется при нагревании. Концентрированная серная кислота не реагирует только с золотом, с остальными металлами, стоящими правее водорода, кислота взаимодействует с образованием сульфатов и сернистого газа. Более активными металлами (цинк, алюминий, магний) концентрированная серная кислота восстанавливается до свободной серы или сероводорода.

С остальными металлами серная кислота взаимодействует с образованием сернистого газа, серы или сероводорода (конкретный продукт восстановления серной кислоты зависит от ее концентрации):

Концентрированная серная кислота окисляет некоторые неметаллы, восстанавливаясь до сернистого газа:

При низких температурах концентрированная серная кислота пассивирует некоторые металлы (железо, алюминий, никель, хром, титан), что дает возможность ее промышленной перевозки в железных цистернах.

Получение и применение серной кислоты

Серную кислоту в промышленности получают двумя способами: контактным и нитрозным.

Контактный способ получения H2SO4:

  • На первом этапе получают сернистый газ путем обжига серного колчедана:
  • На втором этапе, сернистый газ окисляют кислородом воздуха до серного ангидрида, реакция идет в присутствии оксида ванадия, играющего роль катализатора:
  • На третьем, последнем этапе, получают олеум, для этого серный ангидрид растворяют в концентрированной серной кислоте:
  • В дальнейшем олеум транспортируется в железных цистернах, а серная кислота получается из олеума разбавлением водой:

Нитрозный способ получения H2SO4:

  • На первом этапе очищенный от пыли сернистый газ обрабатывается серной кислотой, в которой растворена нитроза (оксид азота):
  • Выделившийся оксид азота окисляется кислородом и снова поглощается серной кислотой:

Применение серной кислоты:

  • для осушки газов;
  • в производстве других кислот, солей, щелочей и проч.;
  • для получения удобрений, красителей, моющих средств;
  • в органическом синтезе;
  • в производстве органических веществ.

Соли серной кислоты

Поскольку серная кислота является двухосновной кислотой, она дает два вида солей: средние соли (сульфаты) и кислые соли (гидросульфаты).

Сульфаты хорошо растворяются в воде, исключение составляют CaSO4, PbSO4, BaSO4 — первые два плохо растворяются, а сульфат бария практически нерастворим. Сульфаты, в состав которых входит вода, называются купоросами (медный купорос — CuSO4·5H2O).

Отличительной особенностью солей серной кислоты является их отношение к нагреванию, например, сульфаты натрия, калия, бария устойчивы к нагреванию, не разлагаясь даже при 1000°C, в то же время, сульфаты меди, алюминия, железа разлагаются даже при незначительном нагревании с образованием оксида металла и серного ангидрида: CuSO4 = CuO+SO3.

Горькая (MgSO4·7H2O) и глауберова (Na2SO4·10H2O) соль используются в качестве слабительного средства. Сульфат кальция (CaSO4·2H2O) — при изготовлении гипсовых повязок.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Характеристика окислительно-восстановительных свойств серной кислоты. Получение тиосульфата натрия

Реакции получения тиосульфата натрия

Задача 866.
Написать уравнение реакции получения тиосульфата натрия. Какова степень окисленности серы в этом соединении? Окислительные или восстановительные свойства проявляет тиосульфат-ион? Привести примеры реакций.
Решение:
Уравнения реакций получения тиосульфата натрия:
а) Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия:

Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия.

б) Окисление полисульфидов кислородом воздуха:

в) Получение тиосульфата натрия путём взаимодействия серы со щёлочью. Реакция протекает с одновременным окислением и восстановлением серы:

г) Непосредственное взаимодействие сернистого ангидрида с сероводородом в щелочной среде. Для этого смесь обеих газов пропускают при сильном размешивании в раствор едкого натра до его нейтрализации, то образуется тиосульфат натрия:

Атомы серы, входящие в состав тиосульфатов имеют различную степень окисленности; у одного атома степень окисленности равна +4, у другого 0.Тиосульфат-ион S2O3 2- проявляет свойства восстановителя. Хлор, бром и другие сильные окислители окисляют его до сульфат-иона SO4 2- , например:
Взаимодействие тиосульфата натрия с хлором (при его избытке):

S2O3 2- + 4Cl2 0 + 5H2O ↔ 2SO4 2- + 8Cl + 10H +

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ↔ 2H 2 SO 4 + 2NaCl + 6HCl l

В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4, другого – от +4 до +6.
Под действием слабого окислителя тиосульфат натрия окисляется до соли тетратионовой кислоты H2S4O6.
Взаимодействие тиосульфата натрия с йодом:

В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4. При нагревании свыше 200 0С тиосульфат натрия распадается по схеме:

4Na2S2O 3Na2SO4 + Na2S + 4S↓

При этом протекает реакция самоокисления-восстановления.

Реакции серной кислоты

Задача 867.
Составить уравнения реакций: а) концентрированной Н2SO4 с магнием и с серебром; б) разбавленной Н2SO4 с железом.
Решение:
а) 4Mg + 5Н2SO4(конц.) → 4MgSO4 + H2S↑) + 4H2O;
б) 2Ag + 2Н2SO (конц.) → Ag2SO4 + SO2↑ + 2H2O;
в) Fe + Н2SO4(разб.) → FeSO4 + H2↑.

Задача 868.
Сколько граммов серной кислоты необходимо для растворения 50 г ртути? Сколько из них пойдет на окисление ртути? Можно ли для растворения ртути взять разбавленную серную кислоту?
Решение:
Уравнение реакции:

Из уравнений окисления-восстановления следует, что на окисление 1 моль Hg затрачивается 1 моль H2SO4, следовательно,

200,5 : 98 = 50 : х; х = (98 . 50)/200,5 = 24,44 г.

Находим массу H2SO4 из пропорции:

200,5 : (2 . 98) = 50 : х; х = (2 . 98 . 50)/200,5 = 48,88 г.

Ответ: 48,88 г; 24,44 г. Ртуть стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на ртуть. Следовательно, для растворения ртути нужно взять концентрированную серную кислоту.

Задача 869.
Одинаковое ли количество серной кислоты потребуется для растворения 40 г никеля, если в одном случае взять концентрированную кислоту, а в другом разбавленную? Какая масса серной кислоты пойдет на окисление никеля в каждом случае?
Решение:
Уравнения реакций:

Рассчитаем массу концентрированной серной кислоты идущую на окисление 40 г никеля из пропорции:

58,7 : (2 . 98) = 40 : х; х = (2 . 98 . 40)/58,7 = 133,56, г.

Теперь рассчитаем массу разбавленной серной кислоты идущую на окисление 40 г никеля из пропорции:

58,7 : 98 = 40 : х; х = (98 . 40)/58,7 = 66,78 г.

Ответ: 133,56 г; 66,78 г. На окисление никеля расходуется одинаковое количество серной кислоты.


источники:

http://prosto-o-slognom.ru/chimia/503_sernaya_kislota_H2SO4.html

http://buzani.ru/zadachi/khimiya-glinka/1283-tiosulfat-natriya-sernaya-kislota-zadachi-866-869