Как из канонического уравнения плоскости получить общее

Каноническое уравнение прямой на плоскости: теория, примеры, решение задач

Прямую линию в прямоугольной системе координат можно задать с помощью канонического уравнения. В этой статье мы расскажем, что это такое, приведем примеры, рассмотрим связи канонических уравнений с другими типами уравнений для этой прямой. В последнем пункте мы разберем несколько задач на закрепление темы.

Понятие канонического уравнения прямой

Допустим, что у нас есть декартова (прямоугольная) система координат, в которой задана прямая. Нам известны координаты произвольно взятой точки этой прямой M 1 ( x 1 , y 1 ) , а также ее направляющего вектора a → = ( a x , a y ) . Попробуем составить уравнение, которое описывало бы эту прямую.

Возьмем плавающую точку M ( x , y ) . Тогда вектор M 1 M → можно считать направляющим для исходной прямой. Его координаты будут равны x — x 1 , y — y 1 (если нужно, повторите материал о том, как правильно вычислять координаты вектора с помощью координат отдельных его точек).

Множество произвольно взятых точек M ( x , y ) будут определять нужную нам прямую с направляющим вектором a → = ( a x , a y ) только в одном случае – если векторы M 1 M → и a → = ( a x , a y ) будут коллинеарны по отношению друг к другу. Посмотрите на картинку:

Таким образом, мы можем сформулировать необходимое и достаточное коллинеарности этих двух векторов:

M 1 M → = λ · a → , λ ∈ R

Если преобразовать полученное равенство в координатную форму, то мы получим:

x — x 1 = λ · a x y — y 1 = λ · a y

При условии, что a x ≠ 0 и a y ≠ 0 , получим:

x — x 1 = λ · a x y — y 1 = λ · a y ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y

Итог наших преобразований и будет каноническим уравнением прямой на плоскости. Запись вида x — x 1 a x = y — y 1 a y также называют уравнением прямой в каноническом виде.

Таким образом, с помощью уравнения x — x 1 a x = y — y 1 a y можно задать в прямоугольной системе координат на плоскости прямую, которая имеет направляющий вектор a → = ( a x , a y ) и проходит через точку M 1 ( x 1 , y 1 ) .

Примером уравнения подобного типа является, например, x — 2 3 = y — 3 1 . Прямая, которая задана с его помощью, проходит через M 1 ( 2 , 3 ) и имеет направляющий вектор a → = 3 , 1 . Ее можно увидеть на рисунке:

Из определения канонического уравнения нужно сделать несколько важных выводов. Вот они:

1. Если прямая, имеющая направляющий вектор a → = ( a x , a y ) , проходит через две точки – M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) , то уравнение для нее может быть записано как в виде x — x 1 a x = y — y 1 a y , так и x — x 2 a x = y — y 2 a y .

2. Если заданная прямая имеет направляющий вектор с координатами a → = ( a x , a y ) , то множество всех ее векторов можно обозначить как μ · a → = ( μ · a x , μ · a y ) , μ ∈ R , μ ≠ 0 . Таким образом, любое уравнение прямой в каноническом виде x — x 1 μ · a x = y — y 1 μ · a y будет соответствовать этой прямой.

Разберем важный пример задачи на нахождение канонического уравнения.

В прямоугольной системе координат на плоскости задана прямая, которая проходит через точку M 1 ( 2 , — 4 ) и имеет направляющий вектор с координатами a → = ( 1 , — 3 ) . Запишите каноническое уравнение, описывающее данную прямую.

Решение

Для начала вспомним общий вид нужного нам канонического уравнения – x — x 1 a x = y — y 1 a y . Подставим в него имеющиеся значения x 1 = 2 , y 1 = — 4 , a x = 1 , a y = — 3 и подсчитаем:

x — x 1 a x = y — y 1 a y ⇔ x — 2 1 = y — ( — 4 ) — 3 ⇔ x — 2 1 = y + 4 — 3

Получившееся в итоге равенство и будет нужным ответом.

Ответ: x — 2 1 = y + 4 — 3

Канонические уравнения прямой на плоскости с a x или a y , равными нулю

Если значение хотя бы одной переменной a является нулевым, то уравнение плоскости используют в первоначальном виде. Сразу две переменные нулевыми не могут быть по определению, поскольку нулевой вектор не бывает направляющим. В таком случае мы можем считать запись x — x 1 a x = y — y 1 a y условной и понимать ее как равенство a y ( x — x 1 ) = a x ( y — y 1 ) .

Разберем случаи канонических уравнений на плоскости с одним нулевым a более подробно. Допустим, что x — x 1 0 = y — y 1 a y при a x = 0 , а исходная прямая будет проходить через M 1 ( x 1 , y 1 ) . В таком случае она является параллельной оси ординат (если x 1 = 0 , то она будет с ней совпадать). Докажем это утверждение.

Для этой прямой вектор a → = ( 0 , a y ) будет считаться направляющим. Этот вектор является коллинеарным по отношению к координатному вектору j → = ( 0 , 1 ) .

Если же нулевым является значение второго параметра, то есть a y = 0 , то мы получаем равенство вида x — x 1 a x = y — y 1 0 . Это уравнение описывает прямую, проходящую через M 1 ( x 1 , y 1 ) , которая расположена параллельно оси абсцисс. Это утверждение верно, поскольку a → = ( a x , 0 ) является для этой прямой направляющим вектором, а он в свою очередь является коллинеарным по отношению к координатному вектору i → = ( 1 , 0 ) .

Проиллюстрируем два частных случая канонического уравнения, описанные выше:

На плоскости задана прямая, параллельная оси O y . Известно, что она проходит через точку M 1 2 3 , — 1 7 . Запишите каноническое уравнение для нее.

Решение

Если прямая по отношению оси ординат является параллельной, то мы можем взять координатный вектор j → = ( 0 , 1 ) в качестве направляющего для нее. В таком случае искомое уравнение выглядит следующим образом:

x — 2 3 0 = y — — 1 7 1 ⇔ x — 2 3 0 = y + 1 7 1

Ответ: x — 2 3 0 = y + 1 7 1

На рисунке изображена прямая. Запишите ее каноническое уравнение.

Решение

Мы видим, что исходная прямая проходит параллельно оси O x через точку M 1 ( 0 , 3 ) . Мы берем координатный вектор i → = ( 1 , 0 ) в качестве направляющего. Теперь у нас есть все данные, чтобы записать нужное уравнение.

x — 0 1 = y — 3 0 ⇔ x 1 = y — 3 0

Ответ: x 1 = y — 3 0

Преобразование канонического уравнения прямой в другие виды уравнений

Мы уже выяснили, что в прямоугольной системе координат на плоскости заданную прямую можно описать с помощью канонического уравнения. Оно удобно для решения многих задач, однако иногда лучше производить вычисления с помощью другого типа уравнений. Сейчас мы покажем, как преобразовать каноническое уравнение в другие виды, если это требуется по ходу решения.

Стандартной форме записи канонического уравнения x — x 1 a x = y — y 1 a y можно поставить в соответствие систему параметрических уравнений на плоскости x = x 1 + a x · λ y = y 1 + a y · λ . Чтобы преобразовать один вид уравнения в другой, нам надо приравнять правую и левую часть исходного равенства к параметру λ . После этого надо выполнить разрешение получившихся равенств относительно переменных x и y :

x — x 1 a x = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y = λ ⇔ ⇔ x — x 1 a x = λ y — y 1 a y = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ

Покажем на примере, как именно выполняется это действие с конкретными числами.

У нас есть прямая, заданная на плоскости с помощью канонического уравнения x + 2 3 = y — 1 11 . Запишите параметрические уравнения исходной прямой.

Решение

Сначала поставим знак равенства между отдельными частями уравнения и переменной λ и получим x + 2 3 = λ y — 1 11 = λ .

Далее можно перейти к формулированию необходимых параметрических уравнений:

x + 2 3 = λ y — 1 11 = λ ⇔ x + 2 = 3 · λ y — 1 = 11 · λ ⇔ x = — 2 + 3 · λ y = 1 + 11 · λ

Ответ: x = — 2 + 3 · λ y = 1 + 11 · λ

Из канонического уравнения можно получить не только параметрические, но и общие уравнения прямой. Вспомним понятие пропорции: запись a b = c d можно представить в виде a · d = b · c с сохранением смысла. Значит, что x — x 1 a x = y — y 1 a y ⇔ a y ( x — x 1 ) = a x ( y — y 1 ) ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 .

Это и есть общее уравнение прямой. Это станет более очевидно, если мы добавим в него значения параметров a y = A , — a x = B , — a y x 1 + a x y 1 = C .

Прямая на плоскости описана с помощью канонического уравнения x — 1 2 = y + 4 0 . Вычислите общее уравнение этой прямой.

Решение

Делаем указанные выше действия по порядку.

x — 1 2 = y + 4 0 ⇔ 0 · ( x — 1 ) = 2 · ( y + 4 ) ⇔ y + 4 = 0

Ответ: y + 4 = 0 .

Также из канонического уравнения мы можем получить уравнение прямой в отрезках, прямой с угловым коэффициентом или нормальное уравнение прямой, но это действие выполняется в два шага: первым делом мы получаем общее уравнение прямой, а вторым – преобразуем его в уравнение указанного типа. Разберем пример такой задачи.

На плоскости задана прямая с помощью уравнения x + 3 3 = y — 2 2 . Запишите уравнение этой же прямой в отрезках.

Решение

Для начала преобразуем исходное каноническое уравнение в общее уравнение прямой.

x + 3 3 = y — 2 2 ⇔ 2 · ( x + 3 ) = 3 · ( y — 2 ) ⇔ 2 x — 3 y + 6 + 2 3 = 0

Далее переходим к формулировке уравнения прямой в отрезках.

2 x — 3 y + 6 + 2 3 = 0 ⇔ 2 x — 3 y = — 6 + 2 3 ⇔ ⇔ 2 — ( 6 + 2 3 ) x — 3 — ( 6 + 2 3 ) y = 1 ⇔ x — 6 + 2 3 2 + y 6 + 2 3 3 = 1 ⇔ x — 3 + 3 + y 3 3 + 2 = 1

Ответ: x — 3 + 3 + y 3 3 + 2 = 1

Достаточно легко решить и задачу, обратную этой, т.е. привести уравнение прямой на плоскости обратно к каноническому. Допустим, у нас есть общее уравнение прямой в стандартной формулировке – A x + B y + C = 0 . При условии A ≠ 0 мы можем перенести B y вправо с противоположным знаком. Получим A x + C = — B y . Теперь выносим A за скобки и преобразуем равенство так:

Получившееся уравнение мы записываем в виде пропорции: x + C A — B = y A .

У нас получилось нужное нам каноническое уравнение прямой на плоскости.

А как сделать преобразование, если B ≠ 0 ? Переносим все слагаемые, кроме A x , вправо с противоположными знаками. Получаем, что A x = — B y — C . Выносим — B за скобки:

Формируем пропорцию: x — B = y + C B A

Есть общее уравнение прямой x + 3 y — 1 = 0 . Перепишите его в каноническом виде.

Решение

Оставим с левой стороны только одну переменную x . Получим:

Теперь вынесем — 3 за скобки: x = — 3 y — 1 3 . Преобразуем равенство в пропорцию и получим необходимый ответ:

Ответ: x — 3 = y — 1 3 1

Таким же образом мы поступаем, если нам нужно привести к каноническому виду уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом.

Наиболее простая задача – переход от параметрических уравнений к каноническим. Нужно просто выразить параметр λ в системе уравнений x = x 1 + a x · λ y = y 1 + a y · λ и приравнять обе части равенств. Схема решения выглядит так:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y

Если значение одного из параметров a будет нулевым, мы поступаем точно таким же образом.

Прямая на плоскости описана с помощью системы параметрических уравнений x = 3 + 0 · λ y = — 2 — 4 · λ . Запишите каноническое уравнение для этой прямой.

Решение

Для начала преобразуем исходные уравнения в систему x = 3 + 0 · λ y = — 2 — 4 · λ . Следующим шагом будет выражение параметра в каждом уравнении:

x = 3 + 0 · λ y = — 2 — 4 · λ ⇔ λ = x — 3 0 λ = y + 2 — 4

Ставим знак равенства между получившимися частями и получаем нужное нам каноническое уравнение: x — 3 0 = y + 2 — 4

Ответ: x — 3 0 = y + 2 — 4

Как решать задачи на составление канонических уравнений

В первую очередь канонические уравнения используются для тех задач, где нужно выяснить, принадлежит ли некоторая точка заданной прямой или нет. Вспомним, что в случае, если точка лежит на прямой, ее координаты будут удовлетворять уравнению этой прямой.

На плоскости задана прямая, каноническое уравнение которой имеет вид x — 1 2 = y + 1 2 — 3 . Выясните, лежат ли на ней точки M 1 3 , — 3 1 2 и M 2 ( 5 , — 4 ) .

Решение

Для проверки принадлежности необходимо подставить координаты точки в исходное уравнение и проверить, получим ли мы в итоге верное равенство.

3 — 1 2 = — 3 1 2 + 1 2 — 2 ⇔ 1 = 1

Результат говорит нам, что точка M 1 3 , — 3 1 2 принадлежит исходной прямой.

Точно так же поступим и с координатами второй точки:

5 — 1 2 = — 4 + 1 2 — 3 ⇔ 2 = 7 6

Получившееся в итоге равенство не является верным, значит, эта точка заданной прямой не принадлежит.

Ответ: первая точка лежит на заданной прямой, а вторая нет.

Есть две точки M 1 ( 2 , 4 ) и M 2 ( — 1 , 3 ) . Будет ли прямая, которая задана в той же плоскости с помощью уравнения x — 2 0 = y — 3 2 , проходить через них?

Решение

Вспомним, что запись x — 2 0 = y — 3 2 можно понимать как 2 · ( x — 2 ) = 0 · ( y — 3 ) ⇔ x — 2 = 0 . Подставим координаты заданных точек в это равенство и проверим.

Начнем с первой точки M 1 ( 2 , 4 ) : 2 — 2 = 0 ⇔ 0 = 0

Равенство верное, значит, эта точка расположена на заданной прямой.

Подставляем данные второй точки: — 1 — 2 = 0 ⇔ — 3 = 0 .

Равенство неверное, значит, точка M 2 ( — 1 , 3 ) не лежит на исходной прямой.

Ответ: через точку M 1 ( 2 , 4 ) прямая проходит, а через M 2 ( — 1 , 3 ) нет.

Далее мы посмотрим, какие еще типичные задачи на нахождение канонического уравнения можно встретить. Возьмем примеры с разными условиями.

Наиболее простыми являются задачи на нахождение канонического уравнения прямой на плоскости, в которых уже заданы координаты некой точки, лежащей на прямой. В первой части материала мы уже приводили пример решения такой задачи.

Чуть сложнее будет найти нужное уравнение, если нам предварительно нужно будет вычислить координаты направляющего вектора исходной прямой. Чаще всего встречаются задачи, в которой нужная прямая проходит через две точки с известными координатами.

Прямая на плоскости проходит через точку M 1 ( 0 , — 3 ) и через точку M 2 ( 2 , — 2 ) . Сформулируйте для этой прямой канонической уравнение.

Решение

Eсли у нас есть координаты двух точек, то мы можем вычислить по ним координаты вектора M 1 M 2 → = 2 , 1 . По отношению к прямой, чье уравнение мы составляем, он будет направляющим вектором. После этого мы можем записать следующее:

x — 0 2 = y — ( — 3 ) 1 ⇔ x 2 = y + 3 1

Также можно использовать координаты второй точки. Тогда мы получим: x — 2 2 = y — ( — 2 ) 1 ⇔ x — 2 2 = y + 2 1

Ответ: x 2 = y + 3 1

Посмотрим, как нужно составлять канонические уравнения прямой на плоскости в том случае, если направляющий вектор этой прямой нужно вычислять исходя из параллельных или перпендикулярных ей прямых.

Известно, что точка M 1 ( 1 , 3 ) принадлежит некоторой прямой, которая параллельна второй прямой, заданной с помощью уравнения x 2 = y — 5 . Запишите каноническое уравнение первой прямой.

Решение

Для первой прямой можно определить направляющий вектор a → = 2 , — 5 . Его можно рассматривать и в качестве направляющего для второй прямой, что следует из самого определения направляющих векторов. Это позволяет нам получить всю информацию, нужную для записи искомого уравнения: x — 1 2 = y — 3 — 5

Ответ: x — 1 2 = y — 3 — 5

Через точку M 1 ( — 1 , 6 ) проходит прямая, которая является перпендикулярной другой прямой, определенной на плоскости с помощью уравнения 2 x — 4 y — 7 = 0 . Запишите каноническое уравнение первой прямой.

Решение

Из данного уравнения мы можем взять координаты нормального вектора второй прямой – 2 , 4 . Мы знаем, что этот вектор является направляющим по отношению к первой. Тогда мы можем записать искомое уравнение:

x — ( — 1 ) 2 = y — 6 4 ⇔ x + 1 1 = y — 6 2

Уравнение плоскости в отрезках

В данной статье мы рассмотрим уравнение плоскости в отрезках. Представим методы преобразования уравнения плоскости в отрезках в уравнение плоскости в общем виде и обратно. Рассмотрим численные примеры.

Уравнение плоскости в отрезках представляется следующей формулой:

,(1)

где a, b, c отличные от нуля числа.

Отметим, что числа a, b, c в уравнении (1) имеют простой геометрический смысл. Они равны длинам отрезков, которые отсекает плоскость на осях Ox, Oy, Oz (Рис.1, Рис.2).

Действительно. Подставляя в (1) y=0, z=0 получим x=a, если же подставить в (1) x=0, y=0 то получим z=c, подставвляя, наконец, x=0, z=0 получим y=b. Таким образом плоскость, определяемая уравнением (1) проходит через точки M1(a, 0, 0), M2(0, b, 0) и M3(0, 0, с).

Пример 1. Составить уравнение прямой, которая пересекает оси Ox, Oy и Oz в точках −1,3 и 7, соответственно.

Решение. Подставляя значения a=−1, b=3 и c=7 в (1), получим:

.
.

Приведение уравнения плоскости в отрезках к общему виду

Левая часть уравнения (1) приведем к общему знаменателю:

.

Далее, умножив обе части уравнения на abc, получим:

.

Пример 2. Уравнение плоскости в отрезках представлено следующим уравнением:

.

Перевести уравнение к общему виду.

Решение. Приведем левую часть уравнения к общему знаменателю:

.

Умножив обе части уравнения на 10, получим:

.
.

Приведение общего уравнения плоскости к уравнению плоскости в отрезках

где A, B, C, D − отличные от нуля числа, т.е. уравнение плокости является полным (о полных и неполных уравнениях плоскости смотрите здесь).

Сделаем следующие преобразования. Переведем свободный член D на правую часть уравнения и разделим обе части уравнения на −D:

.(2)

Уравнение (2) можно переписать в следующем виде:

.(3)

Сделаем следующие обозначения:

Тогда получим уравнение прямой в отрезках (1).

Пример 3. Привести общее уравнение прямой

к уравнению прямой в отрезках.

Решение. Так как все коэффициенты уравнения отличны от нуля, можно построить уравнение плоскости в отрезках. Воспользуемся формулой (3). Имеем: A=−2, B=3, C=5, D=−4. Подставив эти значения в формулу (3), получим:

Общее уравнение плоскости

Время чтения: 34 минуты

Пространственная геометрия не сложнее обычной. Данная тема включает изучение науки о векторах и подробного понимания обычной геометрической науки.

В этой статье будем рассматривать общие уравнения плоскости. Также разберем практические примеры, проанализируем неполное общее уравнение плоскости и проходящих прямых линий.

Что называют общим уравнением плоскости

Поговорим об уравнении плоскости для трехмерного пространства.

Плоскость в трехмерном пространстве

Разбираясь в чертежах, необходимо знать стандартные обозначения.

Все геометрические плоскости обычно прописывают прописными буквами греческого алфавита, а прямые обозначают большими буквами. Иногда для обозначения плоскости используют греческий алфавит, но с подстрочными индексами снизу. Чтобы изобразить плоскость, необходимо нарисовать параллелограмм, который создаст впечатление плоскости в пространстве.

Поскольку плоскость является бесконечной структурой, мы сможем отобразить лишь ее небольшой кусок. Поэтому вокруг параллелограмма изображают неровный овал, произвольной формы.

В реальности плоскости могут быть расположены в любом произвольном порядке, иметь любой наклон или угол.

Если имеется прямоугольная система координат, расположенная в трехмерном пространстве, то в уравнении будут 3 неизвестных. Чтобы добиться равенства, нужно поставить в уравнение координаты точки, которая расположена именно в данной плоскости.

Если будут поставлены координаты другой точки, не из данной плоскости, тождество не получится.

Представим, что в 3-х мерном изображении и прям-ной координатной системы Oxyz общее уравнение плоскости, проходящей через две линии, имеет 3 неизвестных: x, yes и z. Они удовлетворяют координатам плоскости.

Значит, что при использовании этих данных для каждой из точек, лежащей на плоскости, обязательно должно получиться равенство. Если равенства нет, то точка к плоскости не относится.

Для записи общего уравнения плоскости через точку, необходимо вспомнить определение прямой линии, перпендикулярной заданной плоскости.

Каждая прямая будет перпендикулярной к плоскости, если она перпендикулярна относительно прямой, принадлежащей данной плоскости. Это значит, что каждый нормальный вектор, соответствующий исходной плоскости, будет перпендикуляром к нулевому вектору, принадлежащему плоскости. Это является доказательством теоремы, которая будет определять вид общего уравнения плоскости.

Это значит, что каждый нормальный вектор, соответствующий исходной плоскости, будет перпендикуляром к нулевому вектору, принадлежащему плоскости. Это является доказательством теоремы, которая будет определять вид общего уравнения плоскости.

Уравнение для плоскости, которая проходит через 3 точки

Если 3-мерном пространстве дана прямоугольная к-ная система, она обозначена обычно Oxyz.

Тогда уравнение, где данные a, b и C являются действительными числами больше нуля, именуется ур-ем плоскости на отрезки.

При абсолютном значении чисел a, b и с, они будут равны длине отрезков, обрезанных плоскостью по осям координат. Буквенные значения демонстрируют положительное или отрицательное направление линейных сегментов относительно оси координат.

Чтобы составить общее уравнение для исходной плоскости, можно применить следующую теорему.

Любое уравнение, имеющее стандартный вид, имеет действительные значения A, b, C и D, которые не должны быть равны нулю. Эти данные определяют исходную плоскость в системе координат Oxyz, расположенной в 3-мерном пространстве.

Эта теорема содержит в себе 2 части:

  1. Сначала получаем общее уравнение для плоскости, которая будет проходить через точку и саму плоскость.
  2. Затем мы доказываем, что данное уравнение можно использовать для действительных чисел, чтобы доказать, что оно будет определять плоскость V, Z и D.

Доказательство 1 части:

  1. Так как значения чисел A, V и Z не будут равны нулю одновременно, значит есть определенная точка, координаты которой будут соответствовать исходному уравнению, то есть выдавать верное равенство.
  2. Далее вычитаем правую и левую части полученного уравнения из данного уравнения. Получается уравнение, которое будет эквивалентно исходному.
  3. Далее необходимо будет доказать, что полученное уравнение будет определять именно плоскость в данной системе координат 3-мерного пространства и найти общее уравнение для этой плоскости.

Главным условием для перпендикулярности 2 векторов является их равенство. То есть, когда координаты удовлетворяют уравнению, то векторы будут перпендикулярны и наоборот. При верном равенстве набор точек будет обуславливать плоскость, проходящую через эту точку.

Полученное уравнение будет определять плоскость, расположенную в 3-мерном пространстве. Также оно будет полностью соответствовать для общего уравнения плоскости, которая проходит через три точки.

Из сказанного следует, что любое уравнение, эквивалентное исходному, будет определять одну и ту же плоскость. Мы доказали 1 часть теоремы.

Доказательство 2 части теоремы:

Когда имеем плоскость, проходящую через точку, вектор которой нормален, мы можем доказать, что в прям-ной координатной системе Oxyz ее задают с помощью данного основного уравнения.

Если взять любую точку данной системы координат, то векторы будут перпендикулярны, а произведение будет равно нулю.

После принятия данного понятия, уравнение снова изменится и будет определять нашу плоскость.

Вывод: если уравнения эквивалентны, то они определяют одинаковую плоскость. Мы доказали теорему.

Данный обзор будет полезен при решении математических задач, а также в аналитической геометрии.

Общее уравнение плоскости в линейных сечениях и ее вид

Принятое общее уравнение плоскости обычно имеет следующий вид: A x+B y+C z+D= Ax+By+Cz+D = 0.

Оно в основном используется только для 3-мерного пространства и прям-ной координатной системы.

Если задано общее уравнение плоскости, и имеется действительное число, неравное нулю. Оно может задать определенную плоскость, совпадающую с исходной, определяемой уравнением выше и определит точки трехмерного пространства.

Допускаем, что исходная прямоугольная координатная система задается в 3-мерном пространстве Oxyz.

Значит уравнение с действительными ненулевыми данными a, b и C — это уравнение плоскости на отрезки. Эти абсолютные значения a, b и C будут равны длине отрезков, которые ограничены исходной плоскостью.

Обозначения a, б и C будут демонстрировать направление линейных сегментов относительно осей координат. Поэтому координаты точек будут удовлетворять формуле общего уравнения плоскости.

В этой координатной системе плоскость и уравнение полностью связаны между собой, при том условии, что плоскость соответствует основному уравнению, приведенному выше.

Рассмотрим пример, соответствующий данному утверждению.

  1. Если задана плоскость в 3-мерном пространстве и она отвечает уравнению 4x+5y–5z+20= 4x+5y–5 z+ 0 = 0, то это является описанием множества точек, изображающих данную плоскость.
  2. Если точка находится на исходной плоскости, то можно поставить координаты этой точки в уравнение и получить абсолютное равенство.

Прямые в пространстве

Рассмотрим признаки параллельности прямых относительно заданной плоскости в пространстве:

  • Если 2 прямые линии в исходном пространстве параллельны, то они будут лежать в одной плоскости, поэтому пересекаться не могут.
  • Когда 2 линии пересекаются в пространстве, значит они не принадлежат к одной плоскости.
  • Когда прямая линия лежит на заданной плоскости, а другая пересекает данную плоскость в определенной точке, значит они будут пересекаться.
  • Прямые параллельны, если они не имеют общих точек соприкосновения.
  • Когда прямая не лежит на исходной плоскости, но параллельна относительно прямой, лежащей на этой плоскости, то они полностью параллельны.

Отличительные черты плоскости

Существует несколько отличительных качеств плоскости и ее параллельных линий:

  • Когда плоскость имеет линию (прямую) и она параллельна относительно другой плоскости, и пересекает ее, то полученная линия пересечения будет параллельна к исходной прямой.
  • Если две пересекающиеся плоскости, проходят через параллельные прямые, то полученная линия пересечения будет также параллельна прямым.
  • Когда две плоскости параллельны, то у них нет точек для соприкосновения.
  • Когда две прямые пересечены в одной плоскости, но параллельны относительно 2 прямых линий из другой плоскости, значит эти плоскости также параллельны.
  • Если прямая перпендикулярна относительно заданной плоскости, то она будет перпендикулярна относительно любой линии на плоскости.
  • Когда прямая перпендикулярна относительно 2-х пересекающихся прямых линий, которые лежат на плоскости, то она будет перпендикулярна к первой плоскости.

Рассмотрим еще несколько свойств перпендикулярных к плоскости линий:

  • Если прямая перпендикулярна относительно 1 из двух параллельно расположенных плоскостей, то она перпендикулярна и второй плоскости.
  • Когда 1 из двух параллельных перпендикулярна данной плоскости, другая прямая также расположена перпендикулярна к исходной плоскости.
  • Любая из прямых, пересекающих плоскость, когда она не является перпендикуляром, будет наклонной относительно заданной плоскости.
  • Когда любая плоскость перпендикулярна относительно прямой, значит она будет перпендикулярна и другой прямой.

Теорема о трех перпендикулярах на плоскости

Чтобы прямая линия, которая лежит в данной плоскости, была к ней перпендикулярна, вполне достаточно, чтобы она была перпендикулярна к проекции данной плоскости.

Любой угол между линией и плоскостью — это угол между линией и ее выступом на плоскости. Когда прямая b наклонна к исходной плоскости, то прямая а будет проекцией этой наклонной, а угол α будет находиться между наклонной и заданной плоскостью.

Любая прямая, которая получена при пересечении 2 плоскостей, будет называться ребром двугранного угла. Полуплоскости с одним общим ребром называют треугольными угловыми гранями.

Если граница полуплоскости совпадает с краем двугранного угла и делит двугранный угол на два равных, то ее называют биссектрисой.

Угол с двойными стенками можно измерять соответствующим линейным углом. Линейный угол для любого двугранного угла является углом между перпендикулярами, проведенными к каждой грани, и ее краем.

Изображение плоскости

В повседневной жизни многие предметы имеют прямоугольную форму, их поверхность имеет геометрическую плоскость.

Это книжный переплет, оконное стекло, поверхность стола и пр. Более того, глядя на эти предметы под углом и с большого расстояния, мы думаем, что они имеют форму параллелограмма. Поэтому плоскость на рисунке принято изображать в виде параллелограмма

Обычно эта плоскость обозначается одной буквой, например: «плоскость М».

Плоскость и ее основные свойства

Рассмотрим свойства плоскости, которые обычно принимаются без доказательств, поскольку это аксиомы:

  1. Когда каждые 2 точки, которые лежат на одной прямой, принадлежат к единой плоскости, то все точки, находящиеся на этой прямой, также будут принадлежать к данной плоскости.
  2. Если 2 плоскости соприкасаются в одной точке, значит они будут пересекаться на прямой линии, проходящей через эту точку.
  3. Для любых 3 точек, не принадлежащих одной прямой, можно нарисовать плоскость, причем только одну.

Последствия этих аксиом следующие:

  1. Можно нарисовать плоскость, имеющую прямую линию и точку за ней. Действительно утверждение, что точка вне прямой линии вместе с любыми двумя точками, лежащими на прямой, буду образовывать три точки, через которые может пройти новая плоскость.
  2. Через две пересекающиеся линии можно провести единственную плоскость. Если взять точку пересечения и еще одну точку на прямой, то получим 3 точки, через которые можно будет провести единственную плоскость.
  3. Только одну плоскость можно нарисовать двумя параллельными линиями. Доказано, что две параллельные прямые по определению лежат в одной плоскости. Эта плоскость уникальна, потому что не более одной плоскости можно провести через одну параллельную плоскость и одну точку в другую.
  4. Вращение плоскости по прямой. Поэтому можно провести бесчисленное количество плоскостей через любую линию в пространстве.
  • Действительно, пусть это будет прямая линия.
  • Возьмите отдельно точку А.
  • Через А и данную прямую а проходит плоскость М.
  • Возьмем точку B, лежащую вне данной плоскости М.
  • Через данную точку В и прямую линию также будет проходить плоскость N, которая может не совпадать с М. Это связано с тем, что она имеет точку B и она не принадлежит к М плоскости.
  • Мы можем взять другую точку С в пространстве за плоскости М и N.
  • Через точку С и прямой пройдет новая плоскость, например Р. Она не совпадет с М, ни с N, потому что содержит точку С, которая не принадлежит плоскости М и плоскости N.

Продолжая занимать все новые и новые точки в пространстве, мы получаем все больше и больше плоскостей. Они все будут пересекать исходную линию.

Их может быть бесчисленное число. Все полученные плоскости можно рассматривать как различные повороты одной исходной плоскости, которая может будет вращаться вокруг прямой А.

Таким образом, мы можем найти еще одно качество плоскости, которая может вращаться вокруг прямой, принадлежащей к ней.

Строительные задания в пространстве

Все планиметрические конструкции выполнены с помощью чертежных инструментов с использованием единой плоскости. Обычные инструменты рисования больше не подходят, так как вы не можете рисовать символы в пространстве.

Кроме того, при объемном строительстве в пространстве, появляется необходимость в построении еще одного нового элемента — новой плоскости. Ее невозможно построить в пространстве такими простыми средствами.

Поэтому при строительстве в пространстве, строителям необходимо точно знать, как лучше построить ту или иную конструкцию.

Во всех конструкциях в пространстве мы можем предполагать следующие качества:

  1. Плоскость можно выстроить, если найдены элементы, точно определяющие ее положение в исходном пространстве. Мы можем построить плоскость, если она будет проходить через 3 заданные точки, через прямую линию и наружную точку. А также иметь 2 пересекающиеся или две параллельные прямые.
  2. При условии, что даны 2 пересекающиеся плоскости, то обязательно будет существовать и линия их пересечения, которую можно легко найти.
  3. Если дана плоскость в пространстве, то можно легко сделать любые планиметрические конструкции.

Создание любой конструкции в пространстве означает сокращение ее до конечного числа указанных базовых структур. Эти базовые знания можно использовать для решения более сложных задач.

Именно так решаются задачи построения стереометрии.

Пример задания на построение в пространстве

Задача.

Нужно обнаружить точку, где будут пересекаться заданная прямая А с плоскостью Р. Затем необходимо составить нужное уравнение для прямой, проходящей через заданные точки: А (1; 2) и B (-1; 1).

Решение:

  1. подставляем в уравнение (8) х 1 = 1, y 1 = 2, х 2 = -1; y 2 = 1;
  2. получаем либо 2y-4 = х-1, либо х-2y + 3 = 0.

Каноническое уравнение прямой

Пусть декартова система координат будет установлена на плоскости Оху.

Задача: получить простое уравнение и если она является точкой прямой и и вектор кода прямой И.

  1. Возьмем любую точку А на плоскости Р.
  2. Через данную точку А и исходную прямую а проведем простую плоскость Q. Она будет пересекать плоскость Р вдоль новой прямой b.
  3. В плоскости Q находим точку С — пересечение прямых линии а и b.
  4. Эта точка будет желательной. Если прямые а и b окажутся параллельными, то у проблемы не будет решения.

Рассмотрим уравнение прямой, которая является линией пересечения двух плоскостей:

  1. Бесчисленные плоскости проходят через каждую прямую в пространстве.
  2. Любые два из них, пересекающиеся, определяют его в пространстве.
  3. Это значит, что уравнения для 2 плоскостей, вместе взятые, представят собой уравнение для прямой.

Вывод:

Любые 2 непар-ные плоскости, когда они заданы единым уравнением, можно определить по линии их взаимного пересечения. Эти уравнения именуют общими простыми уравнениями.

Рассмотрим уравнение прямой линии, проходящей через две точки:

  1. Заданы точки А (1х; 1у) и B (2х; 2у).
  2. Уравнение для прямой, проходящей через точки А (1х; 1у) и B (2х; 2у), когда они лежат на прямой, параллельной оси О х (y 2 -y 1 = 0) или оси О y (2х -1х = 0), то уравнение будет иметь вид: y = 1у или х = 1х.

Пусть будет плавающая точка, принадлежащая прямой А. Тогда получаем направляющий вектор для прямой А, он будет иметь идентичные координаты. Набор всех точек на данной плоскости определит прямую, проходящую через точку и имеющую вектор направления, при условии, что векторы коллинеарны.

Каноническое уравнение для прямой, лежащей на плоскости, можно задать в прям-ной системе к-т Оху, как прямую, проходящую через точку и имеющую свой вектор направления.

Пример канонического уравнения

Если уравнение является каноническим для прямой, то она должна соответствовать этому уравнению и будет проходит через точку, которая является ее вектором направления.

Нужно обратить внимание на следующие важные факты:

  1. Если направляющий вектор — это прямая линия, которая проходит через точку, то ее каноническое ур-ние можно составить.
  2. Когда один вектор является направляющим для прямой, то каждый из векторов также будет направляющим для заданной прямой.
  3. Поэтому каждое уравнение для любой другой прямой в канонической форме будет соответствовать заданной прямой.


источники:

http://matworld.ru/analytic-geometry/uravnenie-ploskosti-v-otrezkah.php

http://www.napishem.ru/spravochnik/matematika/obschee-uravnenie-ploskosti.html