Как из no получить hno3 уравнение

Как из no получить hno3 уравнение

Вопрос по химии:

Как из NO получить HNO3?

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Химия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются.

Азотная кислота: получение и химические свойства

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет иодоводород:

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Получение концентрированной азотной кислоты

  1. Общая характеристика методов получения концентрированной азотной кислоты.
  2. Получение концентрированной азотной кислоты из разбавленных растворов.
  3. Прямой синтез концентрированной азотной кислоты.

3.1. Физико-химические основы метода.

3.2. Основные стадии.

3.3. Технологическая схема производства концентрированной азотной кислоты прямым синтезом.

  1. Перспективы развития азотнокислотного производства.

Общая характеристика методов получения концентрированной азотной кислоты

Для производства взрывчатых веществ, некоторых пластических масс, красителей и т.д. требуется концентрированная кислота (98)% кислота. Азотную кислоту такой концентрации можно получить двумя способами:

  • либо концентрированием разбавленной кислоты,
  • либо прямым синтезом.

Рассмотрим особенности первого метода – получение из разбавленной азотной кислоты. Отгонкой воды из разбавленной азотной кислоты можно получить лишь 68%-й раствор, поскольку именно при такой концентрации образуется азеотропная смесь, то есть получить раствор концентрации выше 68% этим методом невозможно. Поэтому концентрирование проводят не выпариванием растворителя, а с применением водоотнимающих средств (ВОС). В качестве водоотнимающих средств используются следующие вещества:

  • концентрированная (92 – 94) %–я серная кислота,
  • нитрат магния.

Рассмотрим особенности второго метода – прямого синтеза. Сущность прямого синтеза заключается в том, что процесс протекает по уравнению реакции:

В действительности поглощение димера диоксида азота осуществляется разбавленной (55%–й) азотной кислотой. Процесс осуществляется в автоклаве при t = 90ºС и Р = 5 МПа. В автоклаве получается так называемый нитроолеум HNO3· nNO2, содержащий до 25% NO2. После отдувки диоксида азота получается 97 – 98 %-я HNO3.

Следует отметить, что в прямом синтезе большие энергозатраты: высокое давление, требуется расход пара, кислорода, воды.

Экономичнее пока получение концентрированной азотной кислоты из разбавленной

Но прямой синтез в настоящее время также находит значительное применение.

Получение концентрированной азотной кислоты из разбавленных растворов

Если в качестве водоотнимающего средства используется концентрированная кислота (купоросное масло), то понижается давление водяных паров над раствором, в то время как давление паров азотной кислоты почти не изменяется. Поэтому при нагревании будет отгоняться азотная кислота. Объясняется это тем, что серная кислота образует гидраты и кипит при более высокой температуре, чем 100%-я азотная кислота.

Концентрирование азотной кислоты при помощи купоросного масла проводят в тарельчатых дистилляционных колоннах из ферросилида, тарелки колонн снабжены колпачками и переливными трубами.

Применяют также колонны с насадкой из колец. Производительность таких колонн выше, чем тарельчатых, вследствие меньшего сопротивления аппарата газовому потоку.

Смешение купоросного масла и разбавленной азотной кислоты проводится чаще всего непосредственно в колонне. В некоторых установках это делают предварительно.

Смесь нагревают острым паром.

Схема установки для концентрирования с помощью купоросного масла изображена на Рис. 12

1 – испаритель; 2 – концентрационная колонна; 3 – конденсатор-холодильник; 4 – холодильник азотной кислоты; 5 – абсорбционная колонна; 6 – вентилятор.

Недостатком метода является высокое содержание паров тумана серной кислоты, что требует тщательной и дорогостоящей очистки.

Концентрирование с помощью нитрата магния не имеет указанных недостатков. Отсюда и преимущества концентрирования раствора азотной кислоты с использованием в качестве водоотнимающего средства Mg(NO3)2. Получается чистая высококонцентрированная азотная кислота, производство которой без вредных выбросов в атмосферу.

Схема концентрирования при помощи нитрата магния представлены на Рис. 13

1 – отпарная колонна; 2 – кипятильник; 3 – дистилляционная колонна;
4 – холодильник-конденсатор; 5 – барометрический конденсатор; 6 – вакуум-испаритель; 7 – подогреватель раствора нитрата магния; 8 – насос.

В отличие от концентрирования купоросным маслом в донной схеме достигается замкнутая циркуляция водоотнимающего средства без вывода его из схемы на концентрирование.

Прямой синтез концентрированной азотной кислоты

3.1. Физикохимические основы метода.

В основе прямого синтеза азотной кислоты лежит взаимодействие жидкого тетраоксида N2O4 (ж.) с водой Н2О и газообразным кислородом О2 под давлением 5МПа при температуре 90ºС.

Суммарное уравнение реакции:

Необходимое условие этого процесса – предварительное получение жидкого N2O4 из нитрозного газа.

100%-й оксид азота (IV) NO2 димеризуется в N2O4 при атмосферном давлении и температуре 21,5ºС.

Однако содержание его в нитрозном газе после конверсии аммиака составляет не более 11%. Перевести NO2 в жидкий N2O4 при такой концентрации при атмосферном давлении невозможно.

Даже при Р = 1 МПа и t = – 20ºC степень превращения NO2 в N2O4 не превышает 85%.

Возникает вопрос, как получить 100%-й NO2?

Для выделения 100%-го NO2 из нитрозного газа используют его способность растворяться в концентрированной азотной кислоте с образованием нитроолеума состава HNO3·nNO2.

При последующем разложении нитроолеума:

образуется концентрированная азотная кислота HNO3 как товарный продукт и концентрированный диоксид азота NO2, сжижаемый при охлаждении в тетраоксид азота N2O4(ж.).

Отметим следующие технологические особенности метода прямого синтеза концентрированной азотной кислоты.

Первое – это интенсивное охлаждение на второй и третьей стадиях процесса, для чего используются специальные рассолы, имеющие температуру (– 10ºС).

Второе – это применение автоклава, в котором при повышенном давлении с помощью кислорода происходит доокисление NO в NO2 (или в N2O4).

Запишем химические уравнения, лежащие в основе получения концентрированной азотной кислоты прямым синтезом.

Получение нитрозного газа. Иначе – конверсия аммиака с целью получения NO, как в производстве неконцентрированной кислоты:

Отметим, что исходным материалом для синтеза азотной кислоты являются нитрозные газ конверсии аммиака.

Далее при охлаждении нитрозного газа образуется смесь оксидов азота. При охлаждении происходит окисление NO в NO2:

Затем образуются и другие оксиды – N2O3 и N2O4.

Особенность этого метода заключается в том, что для доокисления NO используют азотную кислоту:

C концентрированной азотной кислотой оксид азота (IV) образует нитроолеум по реакции:

Далее при разложении нитроолеума образуются концентрированная азотная кислота и концентрированный диоксид азота:

Диоксид полимеризуется с образованием димера (тетраоксида):

Наконец, образование азотной кислоты из тетраоксида:

Таким образом, полученная концентрированная азотная кислота является готовым продуктом, а оксид азота NO снова подвергается окислению по уравнениям (3.1) и (3.2) и т. д.

Итоговое уравнение получения концентрированной азотной кислоты прямым синтезом:

2N2O4 + 2H2O + О2 = 4HNO3; ∆Н = – 59,5 КДж

Основные стадии получения концентрированной азотной кислоты из нитрозного газа

Выделим основные стадии (или операции) получения концентрированной азотной кислоты из нитрозного газа:

1 – охлаждение нитрозных газов

2 – окисление NO в NO2 (уравнение 3.1)

3 – доокисление NO азотной кислотой (уравнение 3.2)

4 – охлаждение нитрозных газов

5 – получение нитроолеума (уравнение 3.3)

6 – разложение нитроолеума (уравнение 3.4)

8 – получение жидкого N2O4 (уравнение 3.5)

9 – окисление тетраоксида кислородом (итоговое уравнение)

11 – обезвреживание отходящих газов (эта операция выполняется после получения нитроолеума).

Составьте принципиальную схему получения концентрированной азотной кислоты методом прямого синтеза.

Технологическая схема производства концентрированной азотной кислоты прямым синтезом

Технологическая схема производства концентрированной азотной кислоты прямым синтезом из жидких оксидов азота представлена на рисунке (Рис.14).

Рис.14. Технологическая схема производства концентрирован­ной азотной кислоты прямым синтезом:

1 – скоростной холодильник; 2 – холодильник; 3 – окислительная башня;
4 – доокислитель; 5 – рассольный холодильник; 6 – абсорбционная ко­лонна; 7 – смеситель; 8 – отбелочная колонна; 9 – автоклав; 10 – холо­дильник; 11 – холодильник-коденсатор.

Описание схемы

Нитрозный газ поступает в скоростной холодильник 1, где охлаждается до 40 ºС, при этом образуется 3 %-я азотная кислота. Затем газ поступает в холодильник 2, при этом образуется 30%-я азотная кислота. Часть кислоты направляется в смеситель 7, другая часть – на орошение окислительной башни 3. Нитрозные газы поступают в окислительную башню 3, орошаемую азотной кислотой. При этом образуется 60%-я азотная кислота, часть которой направляется в смеситель 7, а часть — на окисление нитрозных газов в аппарат 4. Нитрозные газы из окислительной башни 3 поступают в доокислитель 4, орошаемый 98%-й азотной кислотой. Азотная кислота из доокислителя 4 направляется в смеситель 7, а нитрозные газы – в рассольный холодильник 5, где охлаждаются до (-10) ºС . Затем нитрозные газы поступают в абсорбционную колонну, орошаемую 98%-й азотной кислотой, для поглощения оксида азота (IV) и для получения нитроолеума. Непоглощенные газы из верхней части колонны направляются в систему очистки выхлопных газов, а образовавшийся нитроолеум подаётся в отбелочную колонну 8 для десорбции NO2. Отбеленная 98%-я азотная кислота охлаждается в холодильнике 10 и поступает в хранилище.

Газообразные концентрированные оксиды азота из отбелочной колонны охлаждаются и конденсируются в холодильнике-конденсаторе 11, который охлаждается рассолом до (-10)С. Затем они поступают в смеситель 7, где образуется смесь, состоящая из (68 – 80) % N2O4 , (26 – 10,5) % HNO3 и (6 – 9,5)% H2O.

Эта смесь подаётся в автоклав 9, туда же под давлением 5МПа поступает кислород. Образующаяся концентрированная азотная кислота отбирается из нижней части автоклава и, соединившись с нитроолеумом из абсорбционной колонны 6, подаётся в отбелочную колонну 8.

Перспективы развития азотнокислотного производства

Развитие азотнокислотного производств возможно в следующих основных направлениях:

  • создание систем высокой единичной мощности (до 4000тыс.т/год), работающих по комбинированной схеме;
  • разработка высокоактивных избирательных неплатиновых катализаторов окисления аммиака;
  • более полное использование энергии сжатых отходящих газов и теплоты химических реакций – создание полностью автономных энергетических схем;
  • создание замкнутого оборота охлаждающей воды;
  • решение проблемы очистки отходящих газов с использованием в качестве адсорбента силикагеля и цеолитов;
  • более полное удаление остатков оксидов азота из отходящих газов с использованием в качестве восстановителя природного газа и аммиака.


источники:

http://chemege.ru/azotnaya-kislota/

http://dimkao.ru/poluchenie-kontsentrirovannoj-azotnoj-kisloty/