Как из обычного уравнения гиперболы сделать каноническое

Каноническое уравнение гиперболы

Вы будете перенаправлены на Автор24

Каноническое уравнение гиперболы имеет следующий вид: $\frac — \frac = 1$, где $a, b$ — положительные действительные числа.

Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.

Вывод канонического уравнения гиперболы

Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы

Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.

Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.

Рассмотрим произвольную точку $M$, принадлежащую гиперболе.

Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.

Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = \sqrt<(x + c)^2 + y^2>$, а $r_2 = \sqrt<(x - c)^2 + y^2>$.

Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $\sqrt <(x + c)^2 + y^2>— \sqrt <(x - c)^2 + y^2>= ±2a$ (1).

Умножим выражение (1) на $\frac <$\sqrt<(x + c)^2 + y^2>+ \sqrt<(x - c)^2 + y^2>><±2a>$, получается:, получается:

Сложим уравнения (1) и (2), получим:

Возведём (3) в квадрат:

$\frac + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$

$\frac \cdot x^2 – y^2 = c^2 – a^2$

Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $\fracx^2 – y^2 = b^2$

Готовые работы на аналогичную тему

Получаем уравнение: $\frac — \frac = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.

Каноническое уравнение параболы и гиперболы немного похожи между собой.

Уравнение параболы выглядит следующим образом:

$y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.

Каноническое уравнение гиперболы примеры решения

Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.

Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:

Запишем знаменатели в виде степеней:

Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.

Построение гиперболы по каноническому уравнению

Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.

Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению

Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±\frac$. Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±\frac<\sqrt<5>> <2>\cdot x$

Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$. Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.

Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы. Выразим $y$ из канонического уравнения нашей гиперболы:

Найдём точки для положительной части гиперболы:

при $x = 3, y =2.5$, а при $x = 3, y ≈3,87$.

Теперь можно отложить все эти точки и построить график гиперболы.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 30 11 2021

Вывод канонического уравнения гиперболы.

Дата добавления: 2015-08-31 ; просмотров: 15811 ; Нарушение авторских прав

ГИПЕРБОЛА

Определение. Гиперболой называется множество точек плоскости, разность расстояний от каждой из которых до двух данных точек плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Вывод канонического уравнения гиперболы.

F1F2=2с (фокусное расстояние), причем по определению 2а 2 –а 2 ), получим: .

По условию а 2 –а 2 есть положительная величина, ее принято обозначать b 2 , т.е. b 2 2 –а 2 (3). Тогда

(4),

Это каноническое уравнение гиперболы. Очевидно, что гипербола – линия второго порядка.

2. Покажем, что всякая точка, координаты которой удовлетворяют уравнению (4), принадлежит гиперболе (по определению).

Пусть М0(х0; у0) – точка, гиперболы, координаты которой удовлетворяют уравнению (4), т.е. . Отсюда . Найдем расстояния r1=F1М0 и r2=F2М0 (их называют левым и правым фокальными радиусами соответственно), применив формулу (3):

r1= ,

аналогично r2= , т.е.

r1= r2= .

(Из условия (3): а 0, т.е. точка М0 принадлежит гиперболе по определению.

Гипербола, ее каноническое уравнение, свойства и параметры

Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r1 — r2| = 2a, откуда Если обозначить b² = c² — a², отсюда можно получить

каноническое уравнение гиперболы.

Эксцентриситетом гиперболы называется величина е = с / а. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

и .

3) Наряду с гиперболой можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

,

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.


источники:

http://life-prog.ru/2_92471_vivod-kanonicheskogo-uravneniya-paraboli.html

http://mydocx.ru/4-88104.html