Как избавиться от е в уравнении

Экспонента, е в степени х

Определение

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045.

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел:
.

Также число e можно представить в виде ряда:
.

График экспоненты

На графике представлена экспонента, е в степени х.
y ( x ) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y ( x ) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y ( x ) = e x определена для всех x .
Ее область определения:
– ∞ .
Ее множество значений:
0 .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = е х
Область определения– ∞
Область значений0
Монотонностьмонотонно возрастает
Нули, y = 0нет
Точки пересечения с осью ординат, x = 0y = 1
+ ∞
0

Обратная функция

Производная экспоненты

Производная е в степени х равна е в степени х:
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера:
,
где есть мнимая единица:
.

Выражения через гиперболические функции

Выражения через тригонометрические функции

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 25-02-2014 Изменено: 09-06-2018

Как избавиться от экспонент в алгебраическом уравнении

Как избавиться от экспонент в алгебраическом уравнении — Рецепты

Содержание

Мало что вселяет страх в начинающего изучающего алгебру, например, вид экспонентов — таких выражений, как y 2 , Икс 3 или даже ужасающий y Икс — всплывают в уравнениях. Чтобы решить уравнение, вам нужно как-то убрать эти показатели. Но по правде говоря, этот процесс не так уж и сложен, если вы изучите ряд простых стратегий, большинство из которых основаны на основных арифметических операциях, которые вы использовали в течение многих лет.

Упростите и объедините похожие термины

Иногда, если вам повезет, в уравнении могут быть экспоненты, которые компенсируют друг друга. Например, рассмотрим следующее уравнение:

y + 2_x_ 2 — 5 = 2(Икс 2 + 2)

Внимательно наблюдая и немного потренировавшись, вы можете заметить, что члены экспоненты фактически компенсируют друг друга, таким образом:

Упростите, где это возможно

Упростив правую часть примера уравнения, вы увидите, что у вас есть одинаковые члены экспоненты по обе стороны от знака равенства:

y + 2_x_ 2 — 5 = 2_x_ 2 + 4

Объединить / отменить лайки

Вычтите 2_x_ 2 с обеих сторон уравнения. Поскольку вы выполнили одну и ту же операцию с обеими сторонами уравнения, вы не изменили его значение. Но вы фактически удалили экспоненту, оставив вам:

При желании можно закончить решение уравнения для y прибавив 5 к обеим сторонам уравнения, получим:

Часто проблемы не так просты, но это все же возможность, на которую стоит обратить внимание.

Ищите возможности для фактора

Со временем, практикой и большим количеством математических классов вы соберете формулы для факторизации определенных типов многочленов. Это похоже на сбор инструментов, которые вы храните в ящике для инструментов, пока они вам не понадобятся. Уловка состоит в том, чтобы научиться определять, какие многочлены можно легко разложить на множители. Вот некоторые из наиболее распространенных формул, которые вы можете использовать, с примерами их применения:

Разница квадратов

Если ваше уравнение содержит два числа в квадрате со знаком минус между ними — например, Икс 2 — 4 2 — вы можете разложить их на множители по формуле а 2 — б 2 = (а + б) (а — б). Если применить формулу к примеру, многочлен Икс 2 — 4 2 факторы к (Икс + 4)(Икс — 4).

Хитрость здесь в том, чтобы научиться распознавать числа в квадрате, даже если они не записаны как экспоненты. Например, на примере Икс 2 — 4 2 с большей вероятностью будет записан как Икс 2 — 16.

Сумма кубиков

Если ваше уравнение содержит два сложенных в куб числа, их можно разложить на множители по формуле а 3 + б 3 = (а + б)(а 2 — ab + б 2 ). Рассмотрим на примере y 3 + 2 3 , который с большей вероятностью будет записан как y 3 + 8. При замене y и 2 в формулу для а а также б соответственно у вас есть:

Очевидно, что показатель степени не исчез полностью, но иногда такой тип формул является полезным промежуточным шагом на пути к избавлению от него. Например, факторинг таким образом в числителе дроби может создать условия, которые затем можно будет отменить, используя члены из знаменателя.

Разница кубиков

Если ваше уравнение содержит два числа в кубе с одним вычтенный с другой стороны, их можно разложить на множители, используя формулу, очень похожую на формулу, показанную в предыдущем примере. Фактически, расположение знака минус — единственное различие между ними, поскольку формула разности кубиков такова: а 3 — б 3 = (а — б)(а 2 + ab + б 2 ).

Рассмотрим на примере Икс 3 — 5 3 , который, скорее всего, был бы записан как Икс 3 — 125. Подстановка Икс за а и 5 для б, Вы получаете:

Как и прежде, хотя это не устраняет полностью показатель степени, это может быть полезным промежуточным шагом на этом пути.

Выделите и примените радикал

Если ни один из вышеперечисленных приемов не работает, и у вас есть только один член, содержащий показатель степени, вы можете использовать наиболее распространенный метод «избавления» от экспоненты: выделите член показателя степени на одной стороне уравнения, а затем примените соответствующий радикал к обеим сторонам уравнения. Рассмотрим на примере z 3 — 25 = 2.

Выделите экспоненциальный член

Выделите показатель степени, прибавив 25 к обеим частям уравнения. Это дает вам:

Примените соответствующий радикал

Индекс применяемого корня — то есть маленький надстрочный индекс перед знаком корня — должен быть таким же, как показатель степени, который вы пытаетесь удалить. Таким образом, поскольку член экспоненты в примере является кубом или третьей степенью, вы должны применить кубический корень или третий корень, чтобы удалить его. Это дает вам:

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 \Rightarrow 5^<-x>=5*5*5 \Rightarrow 5^<-x>=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 \Rightarrow (3*3)^<4x>=3*3*3*3 \Rightarrow(3^2)^<4x>=3^4 \Rightarrow 3^<8x>=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac<1><2>.$$

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^<2x>=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Обратим внимание, что во всем уравнении все \(х\) «входят» в одинаковую функцию — \(3^x\). Сделаем замену \(t=3^x, \; t>0\), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac<7><3>)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!


источники:

http://ru.corpeus.org/rid-exponents-algebraic-equation-82a46c40d0-408e0d

http://sigma-center.ru/exponential_equations