Как изменить уравнение не изменяя корень

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Преобразование уравнений, равносильные преобразования

Решение уравнений часто предполагает переход от исходного уравнения к уравнению, для которого известен метод нахождения корней и по корням которого можно определить корни исходного уравнения. В этой статье мы рассмотрим все основные преобразования уравнений, позволяющие осуществлять такие переходы. Здесь мы остановимся, во-первых, на преобразованиях, приводящих к уравнениям, имеющим те же корни, что и исходное уравнение. Во-вторых, поговорим о преобразованиях, приводящих к уравнениям, которые вместе со всеми корнями исходного уравнения могут иметь и другие корни. В-третьих, рассмотрим преобразования, которые сопряжены с вероятностью потери корней. Здесь же, естественно, разберемся, как избежать потери корней при проведении преобразований. Наконец, поразмышляем, какие преобразования вообще не стоит использовать для решения уравнений. Как всегда, весь материал снабдим поясняющими примерами.

Что понимают под преобразованием уравнения?

В школьных учебниках [1, 2] нет конкретных формулировок по вопросам, что такое преобразование уравнения и что значит преобразовать уравнение. Но имеющейся там информации вполне достаточно для самостоятельного ответа на них. Постараемся это сделать в доступной форме.

Преобразовать уравнение — это значит выполнить некоторые действия с уравнением, его частями и/или входящими в его состав выражениями.

Приведем пример. Возьмем конкретное уравнение 6·x=15 и выполним с ним конкретное действие – разделим обе части этого уравнения на 3 . В результате имеем (6·x):3=15:3 . Так, выполнив деление обеих частей уравнения 6·x=15 на 3 , мы преобразовали это уравнение, в результате проведенного преобразования мы получили новое уравнение (6·x):3=15:3 .

Действия, которые проводят с уравнениями, называют преобразованиями уравнения.

В приведенном выше примере мы проводили такое преобразование уравнения, как деление обеих частей уравнения на 3 .

Таким образом, преобразование уравнения – это с одной стороны процесс, заключающийся в выполнении какого-то действия с уравнением, а с другой стороны – само это действие.

Для чего нужны преобразования уравнений? С их помощью можно решать уравнения. Каким образом? Определенные преобразования, о которых речь пойдет в следующем пункте, позволяют переходить от уравнения к равносильному ему уравнению или уравнению-следствию. Умелое использование таких преобразований дает возможность выстроить цепочку равносильных уравнений и уравнений-следствий с довольно простым в плане решения конечным уравнением, что позволяет по корням последнего уравнения найти все корни исходного уравнения.

Давайте разберем все основные преобразования, которые используются при решении уравнений.

Список основных преобразований, использующихся при решении уравнений

Наиболее часто при решении уравнений используются следующие преобразования:

  • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.
  • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.
  • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.
  • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.
  • Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.
  • Умножение или деление обеих частей уравнения на одно и то же выражение.

Другие преобразования

В представленный в предыдущем пункте список мы намеренно не включили такие преобразования, как возведение обеих частей уравнения в одну и ту же натуральную степень, логарифмирование, потенцирование обеих частей уравнения, извлечение корня одной степени из обеих частей уравнения, освобождение от внешней функции и другие. Дело в том, что эти преобразования не столь общи: преобразования из приведенного выше списка используются при решении уравнений всех видов, а только что упомянутые преобразования — по большей части для решения определенных видов уравнений (иррациональных, показательных, логарифмических и т.д.). Они подробно рассмотрены в рамках соответствующих методов решения уравнений. Вот ссылки, по которым можно выйти на их детальное описание:

  • Возведение обеих частей уравнения в одну и ту же натуральную степень.
  • Логарифмирование обеих частей уравнения.
  • Потенцирование обеих частей уравнения.
  • Извлечение корня одной и той же степени из обеих частей уравнения.
  • Освобождение от одинаковой внешней функции.
  • Замена выражения, отвечающего одной из частей исходного уравнения, выражением из другой части исходного уравнения.

Приведенные ссылки содержат исчерпывающую информацию по перечисленным преобразованиям. Поэтому, на них в этой статье мы больше не будем останавливаться. Вся последующая информация относится к преобразованиям из списка основных преобразований.

Что получается в результате преобразования уравнения?

Проведение всех перечисленных выше преобразований может дать или уравнение, имеющее те же корни, что и исходное уравнение, или уравнение, среди корней которого содержатся все корни исходного уравнения, но которое может иметь еще и другие корни, или уравнение, среди корней которого будут не все корни преобразованного уравнения. В следующих пунктах мы разберем, какие из этих преобразований при выполнении каких условий к каким уравнениям приводят. Это крайне важно знать для успешного решения уравнений.

Равносильные преобразования уравнений

Особый интерес представляют преобразования уравнений, дающие в результате их проведения равносильные уравнения, то есть, уравнения, имеющие то же множество корней, что и исходное уравнение. Такие преобразования называют равносильными преобразованиями. В школьных учебниках соответствующее определение не приводится в явном виде, но оно легко читается из контекста:

Равносильные преобразования уравнений – это преобразования, дающие равносильные уравнения.

Так чем же интересны равносильные преобразования? Тем, что если с их помощью удастся прийти от решаемого уравнения к довольно простому равносильному уравнению, то решение этого уравнения даст искомое решение исходного уравнения.

Из перечисленных в предыдущем пункте преобразований не все являются всегда равносильными. Некоторые преобразования являются равносильными лишь при определенных условиях. Составим список утверждений, которые определяют, какие преобразования и при каких условиях являются равносильными преобразованиями уравнения. Для этого за основу возьмем приведенный выше список, и к преобразованиям, которые не всегда равносильны, добавим условия, придающие им равносильность. Вот этот список:

  • Замена выражения в левой или правой части уравнения тождественно равным ему выражением, при которой не изменяется ОДЗ переменных для уравнения, является равносильным преобразованием уравнения.

Поясним, почему это так. Для этого возьмем уравнение с одной переменной (аналогичные рассуждения можно провести и для уравнений с несколькими переменными) вида A(x)=B(x) , выражения в его левой и правой части мы обозначили как A(x) и B(x) соответственно. Пусть выражение C(x) тождественно равно выражению A(x) , причем ОДЗ переменной x уравнения C(x)=B(x) совпадает с ОДЗ переменной x для исходного уравнения. Докажем, что преобразование уравнения A(x)=B(x) в уравнение C(x)=B(x) есть равносильное преобразование, то есть, докажем, что уравнения A(x)=B(x) и C(x)=B(x) равносильные.

Для этого достаточно показать, что любой корень исходного уравнения является корнем уравнения C(x)=B(x) , а любой корень уравнения C(x)=B(x) является корнем исходного уравнения.

Начнем с первой части. Пусть q – корень уравнения A(x)=B(x) , тогда при подстановке его вместо x мы получим верное числовое равенство A(q)=B(q) . Так как выражения A(x) и C(x) тождественно равны и выражение C(q) имеет смысл (это следует из условия о том, что ОДЗ для уравнения C(x)=B(x) совпадает с ОДЗ для исходного уравнения), то справедливо числовое равенство A(q)=C(q) . Дальше используем свойства числовых равенств. В силу свойства симметричности равенство A(q)=C(q) можно переписать как C(q)=A(q) . Тогда в силу свойства транзитивности из равенств C(q)=A(q) и A(q)=B(q) следует равенство C(q)=B(q) . Этим доказано, что q – корень уравнения C(x)=B(x) .

Абсолютно аналогично доказывается и вторая часть, а вместе с этим и все утверждение в целом.

Суть разобранного равносильного преобразования состоит в следующем: оно позволяет отдельно работать с выражениями в левой и правой части уравнений, заменяя их тождественно равными выражениями на исходной ОДЗ переменных.

Самый банальный пример: мы можем заменить сумму чисел в правой части уравнения x=2+1 ее значением, при этом получится равносильное уравнение вида x=3 . Действительно, мы заменили выражение 2+1 тождественно равным ему выражением 3 , и при этом не изменилась ОДЗ уравнения. Еще пример: в левой части уравнения 3·(x+2)=7·x−2·x+4−1 мы можем раскрыть скобки, а в правой – привести подобные слагаемые, что приведет нас к равносильному уравнению 3·x+6=5·x+3 . Полученное уравнение действительно является равносильным, так как мы заменяли выражения тождественно равными им выражениями и при этом получили уравнение, имеющее ОДЗ, совпадающее с ОДЗ для исходного уравнения.

  • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа есть равносильное преобразование уравнения.

Докажем, что прибавление к обеим частям уравнения A(x)=B(x) одного и того же числа c дает равносильное уравнение A(x)+c=B(x)+c и что вычитание из обеих частей уравнения A(x)=B(x) одного и того же числа c дает равносильное уравнение A(x)−c=B(x)−c .

Пусть q – корень уравнения A(x)=B(x) , тогда справедливо равенство A(q)=B(q) . Свойства числовых равенств нам позволяют прибавлять к обеим частям верного числового равенства или вычитать из его частей одно и то же число. Обозначим это число как c , тогда справедливы равенства A(q)+c=B(q)+c и A(q)−c=B(q)−c . Из этих равенств следует, что q – корень уравнения A(x)+c=B(x)+c и уравнения A(x)−c=B(x)−c .

Теперь обратно. Пусть q – корень уравнения A(x)+c=B(x)+c и уравнения A(x)−c=B(x)−c , тогда A(q)+c=B(q)+c и A(q)−c=B(q)−c . Мы знаем, что вычитание одного и того же числа из обеих частей верного числового равенства дает верное числовое равенство. Также мы знаем, что прибавление к обеим частям верного числового равенства дает верное числовое равенство. Вычтем из обеих частей верного числового равенства A(q)+c=B(q)+c число с , а к обеим частям равенства A(x)−c=B(x)−c прибавим число c . Это нам даст верные числовые равенства A(q)+c−c=B(q)+c−c и A(q)−c+c=B(q)+c−c , откуда заключаем, что A(q)=B(q) . Из последнего равенства следует, что q – корень уравнения A(x)=B(x) .

Так доказано исходное утверждение в целом.

Приведем пример такого преобразования уравнений. Возьмем уравнение x−3=1 , и преобразуем его, прибавив к его обеим частям число 3 , после этого мы получим уравнение x−3+3=1+3 , которое равносильно исходному. Понятно, что в полученном уравнении можно выполнить действия с числами, о чем мы говорили в предыдущем пункте списка, в результате имеем уравнение x=4 . Так, выполняя равносильные преобразования, мы невзначай решили уравнение x−3=1 , его корень – это число 4 . Рассмотренное равносильное преобразование очень часто используется для избавления от одинаковых числовых слагаемых, находящихся в разных частях уравнения. Например, и в левой и в правой частях уравнения x 2 +1=x+1 присутствует одинаковое слагаемое 1 , вычитание из обеих частей уравнения числа 1 позволяет перейти к равносильному уравнению x 2 +1−1=x+1−1 и дальше к равносильному уравнению x 2 =x , и тем самым избавиться от этих одинаковых слагаемых.

  • Прибавление к обеим частям уравнения или вычитание из обеих частей уравнения выражения, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, является равносильным преобразованием.

Докажем это утверждение. То есть, докажем, что уравнения A(x)=B(x) и A(x)+C(x)=B(x)+C(x) равносильные при условии, что ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) .

Сначала докажем один вспомогательный момент. Докажем, что при указанных условиях ОДЗ уравнений до и после преобразования одинаковые. Действительно, ОДЗ для уравнения A(x)+C(x)=B(x)+C(x) можно рассматривать как пересечение ОДЗ для уравнения A(x)=B(x) и ОДЗ для выражения C(x) . Из этого и из того, что ОДЗ для выражения С(x) по условию не уже, чем ОДЗ для уравнения A(x)=B(x) , следует, что ОДЗ для уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) одинаковые.

Теперь докажем равносильность уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) при условии, что области допустимых значений для этих уравнений одинаковые. Доказательство равносильности уравнений A(x)=B(x) и A(x)−C(x)=B(x)−C(x) при указанном условии приводить не будем, так как оно аналогично.

Пусть q – корень уравнения A(x)=B(x) , тогда справедливо числовое равенство A(q)=B(q) . Так как ОДЗ уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) одинаковые, то выражение C(x) имеет смысл при x=q , значит, C(q) – это некоторое число. Если прибавить C(q) к обеим частям верного числового равенства A(q)=B(q) , то это даст верное числовое неравенство A(q)+C(q)=B(q)+C(q) , из которого следует, что q – корень уравнения A(x)+C(x)=B(x)+C(x) .

Обратно. Пусть q – корень уравнения A(x)+C(x)=B(x)+C(x) , тогда A(q)+C(q)=B(q)+C(q) – верное числовое равенство. Мы знаем, что вычитание одного и того же числа из обеих частей верного числового равенства дает верное числовое равенство. Вычтем C(q) из обеих частей равенства A(q)+C(q)=B(q)+C(q) , это дает A(q)+C(q)−C(q)=B(q)+C(q)−C(q) и дальше A(q)=B(q) . Следовательно, q – корень уравнения A(x)=B(x) .

Так рассматриваемое утверждение полностью доказано.

Приведем пример проведения этого преобразования. Возьмем уравнение 2·x+1=5·x+2 . Мы можем прибавить к его обеим частям, например, выражение −x−1 . Прибавление этого выражения не изменит ОДЗ, значит, такое преобразование является равносильным. В результате его проведения получим равносильное уравнение 2·x+1+(−x−1)=5·x+2+(−x−1) . Это уравнение можно преобразовать дальше: раскрыть скобки и выполнить приведение подобных слагаемых в его левой и правой части (см. первый пункт списка). После выполнения этих действий мы получим равносильное уравнение x=4·x+1 . Часто рассматриваемое преобразование уравнений применяется для избавления от одинаковых слагаемых, находящихся одновременно в левой и правой части уравнения.

  • Если в уравнении перенести слагаемое из одной части в другую, изменив знак этого слагаемого на противоположный, то получится уравнение, равносильное данному.

Это утверждение является следствием предыдущих.

Покажем, как проводится это равносильное преобразование уравнения. Возьмем уравнение 3·x−1=2·x+3 . Перенесем слагаемое, например, 2·x из правой части в левую, изменив его знак. При этом получим равносильное уравнение 3·x−1−2·x=3 . Еще можно перенести минус единицу из левой части уравнения в правую, изменив знак на плюс: 3·x−2·x=3+1 . Наконец, приведение подобных слагаемых приводит нас к равносильному уравнению x=4 .

  • Умножение или деление обеих частей уравнения на одно и то же отличное от нуля число является равносильным преобразованием.

Пусть A(x)=B(x) – некоторое уравнение и c – некоторое число, отличное от нуля. Докажем, что умножение или деление обеих частей уравнения A(x)=B(x) на число c является равносильным преобразованием уравнения. Для этого докажем, что уравнения A(x)=B(x) и A(x)·c=B(x)·c , а также уравнения A(x)=B(x) и A(x):c=B(x):c — равносильные. Это можно сделать так: доказать, что любой корень уравнения A(x)=B(x) является корнем уравнения A(x)·c=B(x)·c и корнем уравнения A(x):c=B(x):c , после чего доказать, что любой корень уравнения A(x)·c=B(x)·c , как и любой корень уравнения A(x):c=B(x):c является корнем уравнения A(x)=B(x) . Сделаем это.

Пусть q – корень уравнения A(x)=B(x) . Тогда справедливо числовое равенство A(q)=B(q) . Изучив свойства числовых равенств, мы узнали, что умножение или деление обеих частей верного числового равенства на одно и то же число, отличное от нуля, приводит к верному числовому равенству. Умножив обе части равенства A(q)=B(q) на c , получим верное числовое равенство A(q)·c=B(q)·c , из которого следует, что q – корень уравнения A(x)·c=B(x)·c . А разделив обе части равенства A(q)=B(q) на c , получим верное числовое равенство A(q):c=B(q):c , из которого следует, что q – корень уравнения A(x):c=B(x):c .

Теперь в другую сторону. Пусть q – корень уравнения A(x)·c=B(x)·c . Тогда A(q)·c=B(q)·c – верное числовое равенство. Разделив его обе части на отличное от нуля число c , получим верное числовое равенство A(q)·c:c=B(q)·c:c и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) . Если q – корень уравнения A(x):c=B(x):c . Тогда A(q):c=B(q):c – верное числовое равенство. Умножив его обе части на отличное от нуля число c , получим верное числовое равенство A(q):c·c=B(q):c·c и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) .

Приведем пример проведения этого преобразования. С его помощью можно, например, избавиться от дробей в уравнении . Для этого можно умножить обе части уравнения на 12 . В результате получится равносильное уравнение вида , которое дальше можно преобразовать в равносильное уравнение 7·x−3=10 , не содержащее в своей записи дробей.

  • Умножение или деление обеих частей уравнения на одно и то же выражение, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения и не обращающееся в нуль на ОДЗ для исходного уравнения, является равносильным преобразованием.

Докажем это утверждение. Для этого докажем, что если ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) , и C(x) не обращается в нуль на ОДЗ для уравнения A(x)=B(x) , то уравнения A(x)=B(x) и A(x)·C(x)=B(x)·C(x) , как и уравнения A(x)=B(x) и A(x):C(x)=B(x):C(x) — равносильные.

Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Из того, что ОДЗ для выражения C(x) не уже ОДЗ для уравнения A(x)=B(x) следует, что выражение C(x) имеет смысл при x=q . Значит, C(q) – это некоторое число. Причем C(q) отлично от нуля, что следует из условия не обращения выражения C(x) в нуль. Если умножить обе части равенства A(q)=B(q) на отличное от нуля число C(q) , то это даст верное числовое равенство A(q)·C(q)=B(q)·C(q) , из которого следует, что q – корень уравнения A(x)·C(x)=B(x)·C(x) . Если разделить обе части равенства A(q)=B(q) на отличное от нуля число C(q) , то это даст верное числовое равенство A(q):C(q)=B(q):C(q) , из которого следует, что q – корень уравнения A(x):C(x)=B(x):C(x) .

Обратно. Пусть q — корень уравнения A(x)·C(x)=B(x)·C(x) . Тогда A(q)·C(q)=B(q)·C(q) – верное числовое равенство. Заметим, что ОДЗ для уравнения A(x)·C(x)=B(x)·C(x) такая же, как ОДЗ для уравнения A(x)=B(x) (это мы обосновали в одном из предыдущих пунктов текущего списка). Так как C(x) по условию не обращается на ОДЗ для уравнения A(x)=B(x) в нуль, то C(q) – отличное от нуля число. Разделив обе части равенства A(q)·C(q)=B(q)·C(q) на отличное от нуля число C(q) , получим верное числовое равенство A(q)·C(q):C(q)=B(q)·C(q):C(q) и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) . Если q — корень уравнения A(x):C(x)=B(x):C(x) . Тогда A(q):C(q)=B(q):C(q) – верное числовое равенство. Умножив обе части равенства A(q):C(q)=B(q):C(q) на отличное от нуля число C(q) , получим верное числовое равенство A(q):C(q)·C(q)=B(q):C(q)·C(q) и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) .

Для наглядности приведем пример проведения разобранного преобразования. Осуществим деление обеих частей уравнения x 3 ·(x 2 +1)=8·(x 2 +1) на выражение x 2 +1 . Это преобразование равносильное, так как выражение x 2 +1 не обращается в нуль на ОДЗ для исходного уравнения и ОДЗ этого выражения не уже, чем ОДЗ для исходного уравнения. В результате проведения этого преобразования получим равносильное уравнение x 3 ·(x 2 +1):(x 2 +1)=8·(x 2 +1):(x 2 +1) , которое можно дальше преобразовать к равносильному уравнению x 3 =8 .

Преобразования, приводящие к уравнениям-следствиям

В предыдущем пункте мы разобрали, какие преобразования из списка основных преобразований и при каких условиях являются равносильными. Теперь посмотрим, какие из этих преобразований и при каких условиях приводят к уравнениям-следствиям, то есть, к уравнениям, которые содержат все корни преобразовываемого уравнения, но помимо них могут иметь и другие корни – посторонние корни для исходного уравнения.

Преобразования, приводящие к уравнениям-следствиям, востребованы не меньше равносильных преобразований. Если с их помощью удастся получить довольно простое в плане решения уравнение, то его решение и последующее отсеивание посторонних корней даст решение исходного уравнения.

Заметим, что все равносильные преобразования можно считать частными случаями преобразований, которые приводят к уравнениям-следствиям. Оно и понятно, ведь равносильное уравнение есть частный случай уравнения-следствия. Но с практической точки зрения более полезным является знание о том, что рассматриваемое преобразование именно равносильное, а не приводящее к уравнению-следствию. Разъясним, почему это так. Если мы знаем, что преобразование является равносильным, то полученное в результате его проведения уравнение точно не будет иметь корней, посторонних для исходного уравнения. А преобразование, приводящее к уравнению-следствию, может быть причиной появления посторонних корней, что обязывает нас в дальнейшем проводить дополнительное действие – отсеивание посторонних корней. Поэтому, в этом пункте статьи мы основное внимание сосредоточим на преобразованиях, в результате проведения которых могут появиться посторонние корни для исходного уравнения. И действительно важно уметь отличать такие преобразования от равносильных преобразований, чтобы четко понимать, когда необходимо проводить отсеивание посторонних корней, а когда это делать не обязательно.

Проанализируем весь список основных преобразований уравнений, приведенный во втором пункте данной статьи, с целью поиска преобразований, в результате проведения которых могут появиться посторонние корни.

  • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.

Мы доказали, что это преобразование является равносильным, если при его проведении не изменяется ОДЗ. А если ОДЗ изменится, что при этом произойдет? Сужение ОДЗ может повлечь потерю корней, подробнее об этом речь пойдет в следующем пункте. А при расширении ОДЗ могут появиться посторонние корни. Обосновать это не сложно. Приведем соответствующие рассуждения.

Пусть выражение C(x) такое, что оно тождественно равно выражению A(x) и ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) . Докажем, что уравнение C(x)=B(x) – это следствие уравнения A(x)=B(x) , и что среди корней уравнения C(x)=B(x) могут быть корни, посторонние для уравнения A(x)=B(x) .

Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Так как ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) , то выражение C(x) определено при x=q . Тогда, учитывая тождественное равенство выражений C(x) и A(x) , заключаем, что C(q)=A(q) . Из равенств C(q)=A(q) и A(q)=B(q) в силу свойства транзитивности вытекает равенство C(q)=B(q) . Из этого равенства следует, что q – это корень уравнения C(x)=B(x) . Это доказывает, что при указанных условиях уравнение C(x)=B(x) является следствием уравнения A(x)=B(x) .

Остается обосновать, что уравнение C(x)=B(x) может иметь корни, отличные от корней уравнения A(x)=B(x) . Докажем, что любой корень уравнения C(x)=B(x) из ОДЗ для уравнения A(x)=B(x) является корнем уравнения A(x)=B(x) . Путь p – корень уравнения C(x)=B(x) , принадлежащий ОДЗ для уравнения A(x)=B(x) . Тогда C(p)=B(p) – верное числовое равенство. Так как p принадлежит ОДЗ для уравнения A(x)=B(x) , то выражение A(x) определено при x=p . Из этого и из тождественного равенства выражений A(x) и C(x) следует, что A(p)=C(p) . Из равенств A(p)=C(p) и C(p)=B(p) в силу свойства транзитивности следует, что A(p)=B(p) , значит, p – это корень уравнения A(x)=B(x) . Этим доказано, что любой корень уравнения C(x)=B(x) из ОДЗ для уравнения A(x)=B(x) является корнем уравнения A(x)=B(x) . Другими словами, на ОДЗ для уравнения A(x)=B(x) не может быть корней уравнения C(x)=B(x) , которые являются посторонними корнями для уравнения A(x)=B(x) . Но по условию ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) . А это допускает существование числа r , принадлежащего ОДЗ для уравнения C(x)=B(x) и не принадлежащего ОДЗ для уравнения A(x)=B(x) , являющегося корнем уравнения C(x)=B(x) . То есть, уравнение C(x)=B(x) может иметь корни, посторонние для уравнения A(x)=B(x) , причем все они будут принадлежать тому множеству, на которое расширяется ОДЗ для уравнения A(x)=B(x) при замене в нем выражения A(x) тождественно равным ему выражением C(x) .

Итак, замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями, в результате которой расширяется ОДЗ, в общем случае приводит к уравнению-следствию (то есть, может привести к возникновению посторонних корней) и лишь в частном случае приводит к равносильному уравнению (в том случае, если полученное уравнение не будет иметь корней, посторонних для исходного уравнения).

Приведем пример проведения разобранного преобразования. Замена выражения в левой части уравнения тождественно равным ему выражением x·(x−1) приводит к уравнению x·(x−1)=0 , при этом происходит расширение ОДЗ – в нее добавляется число 0 . Полученное уравнение имеет два корня 0 и 1 , причем подстановка этих корней в исходное уравнение показывает, что 0 – это посторонний корень для исходного уравнения, а 1 – корень исходного уравнения. Действительно, подстановка нуля в исходное уравнение дает не имеющее смысла выражение , так как в нем присутствует деление на нуль, а подстановка единицы дает верное числовое равенство , что то же самое 0=0 .

Обратите внимание, что подобное преобразование похожего уравнения в уравнение (x−1)·(x−2)=0 , в результате проведения которого тоже расширяется ОДЗ, не приводит к появлению посторонних корней. Действительно, оба корня полученного уравнения (x−1)·(x−2)=0 — числа 1 и 2 , являются корнями исходного уравнения, в чем легко убедиться путем проверки подстановкой. Этими примерами мы еще раз хотели подчеркнуть, что замена выражения в левой или правой части уравнения тождественно равным ему выражением, при которой расширяется ОДЗ, не обязательно приводит к появлению посторонних корней. Но может и приводить к их появлению. Так что, если в процессе решения уравнения такое преобразование имело место быть, то обязательно нужно проводить проверку с целью выявления и отсеивания посторонних корней.

Наиболее часто ОДЗ уравнения может расшириться и могут появиться посторонние корни из-за замены нулем разности одинаковых выражений или суммы выражений с противоположными знаками, из-за замены нулем произведений с одним или несколькими нулевыми множителями, из-за сокращения дробей и из-за использования свойств корней, степеней, логарифмов и т.д.

  • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.

Выше мы показали, что это преобразование всегда равносильное, то есть, приводящее к равносильному уравнению. Идем дальше.

  • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.

В предыдущем пункте мы добавили условие про то, что ОДЗ для прибавляемого или вычитаемого выражения должна быть не уже, чем ОДЗ для преобразовываемого уравнения. Это условие сделало рассматриваемое преобразование равносильным. Здесь имеют место рассуждения, аналогичные рассуждениям, приведенным в начале этого пункта статьи касательно того, что равносильное уравнение – это частный случай уравнения-следствия и что знание о равносильности преобразования практически полезнее знания об этом же преобразовании, но с позиций того, что оно приводит к уравнению-следствию.

А может ли в результате прибавления одного и того же выражения или вычитания одного и того же выражения из обеих частей уравнения получиться уравнение, которое помимо всех корней исходного уравнения будет иметь какие-либо еще корни? Нет, не может. Если ОДЗ для прибавляемого или вычитаемого выражения не уже, чем ОДЗ для исходного уравнения, то в результате прибавления или вычитания получится равносильное уравнение. Если же ОДЗ для прибавляемого или вычитаемого выражения будет уже, чем ОДЗ для исходного уравнения, то это может привести к потере корней, а не к появлению посторонних корней. Подробнее об этом поговорим в следующем пункте.

  • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.

Это преобразование уравнения всегда равносильное. Поэтому нет смысла рассматривать его как преобразование, приводящее к уравнению-следствию, по озвученным выше причинам.

  • Умножение или деление обеих частей уравнения на одно и то же число.

В предыдущем пункте мы доказали, что если умножение или деление обеих частей уравнения проводится на отличное от нуля число, то это является равносильным преобразованием уравнения. Поэтому, опять же, нет говорить о нем, как о преобразовании, приводящем к уравнению-следствию.

Но здесь стоит обратить внимание на оговорку про отличие от нуля числа, на которое проводится умножение или деление обеих частей уравнения. Для деления эта оговорка понятна – с начальных классов мы уяснили, что на нуль делить нельзя. А зачем эта оговорка для умножения? Давайте поразмыслим, к чему приведет умножение обеих частей уравнения на нуль. Для наглядности возьмем конкретное уравнение, например, 2·x+1=x+5 . Это линейное уравнение, имеющее единственный корень, которым является число 4 . Запишем уравнение, которое получится при умножении обеих частей этого уравнения на нуль: (2·x+1)·0=(x+5)·0 . Очевидно, корнем этого уравнения является любое число, ведь при подстановке в это уравнение вместо переменной x любого числа получается верное числовое равенство 0=0 . То есть, в нашем примере умножение обеих частей уравнения на нуль привело к уравнению-следствию, что явилось причиной появления бесконечного множества посторонних корней для исходного уравнения. Причем, стоит заметить, что в этом случае обычные способы отсеивания посторонних корней не справляются со своей задачей. Значит, проделанное преобразование бесполезно для решения исходного уравнения. И это типичная ситуация для рассматриваемого преобразования. Именно поэтому такое преобразование, как умножение обеих частей уравнения на нуль, не используется для решения уравнений. Это преобразование и другие преобразования, которые не следует использовать для решения уравнений, нам еще предстоит разобрать в последнем пункте.

  • Умножение или деление обеих частей уравнения на одно и то же выражение.

В предыдущем пункте мы доказали, что это преобразование является равносильным при выполнении двух условий. Напомним их. Первое условие: ОДЗ для этого выражения должна быть не уже, чем ОДЗ для исходного уравнения. Второе условие: выражение, на которое проводится умножение или деление, не должно обращаться в нуль на ОДЗ для исходного уравнения.

Давайте изменим первое условие, то есть, будем считать, что ОДЗ для выражения, на которое планируется умножение или деление обеих частей уравнения, уже, чем ОДЗ для исходного уравнения. В результате проведения такого преобразования будет получено уравнение, ОДЗ для которого будет уже, чем ОДЗ для исходного уравнения. Такие преобразования могут привести к потере корней, о них мы будем говорить в следующем пункте.

А что будет, если убрать второе условие про не обращение в нуль значений выражения, на которое проводится умножение или деление обеих частей уравнения, на ОДЗ для исходного уравнения?

Деление обеих частей уравнения на одно и то же выражение, которое обращается в нуль на ОДЗ для исходного уравнения, приведет к уравнению, ОДЗ которого будет уже, чем ОДЗ для исходного уравнения. Действительно, ведь из нее выпадут числа, обращающие в нуль выражение, на которое было проведено деление. Это может привести к потере корней.

А как обстоят дела с умножением обеих частей уравнения на одно и то же выражение, которое обращается в нуль на ОДЗ для исходного уравнения? Можно показать, что при умножении обеих частей уравнения A(x)=B(x) на выражение C(x) , ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, и которое обращается в нуль на ОДЗ для исходного уравнения, получается уравнение-следствие, которое помимо всех корней уравнения A(x)=B(x) может иметь и другие корни. Сделаем это, тем более что этот пункт статьи как раз посвящен преобразованиям, приводящим к уравнениям-следствиям.

Пусть выражение C(x) такое, что ОДЗ для него не уже, чем ОДЗ для уравнения A(x)=B(x) , и оно обращается в нуль на ОДЗ для уравнения A(x)=B(x) . Докажем, что при этом уравнение A(x)·C(x)=B(x)·C(x) есть следствие уравнения A(x)=B(x) .

Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Так как ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) , то выражение C(x) определено при x=q , значит, C(q) – это некоторое число. Умножение обеих частей верного числового равенства на любое число дает верное числовое равенство, поэтому, A(q)·C(q)=B(q)·C(q) — верное числовое равенство. Значит q – корень уравнения A(x)·C(x)=B(x)·C(x) . Этим доказано, что любой корень уравнения A(x)=B(x) является корнем уравнения A(x)·C(x)=B(x)·C(x) , откуда следует, что уравнение A(x)·C(x)=B(x)·C(x) есть следствие уравнения A(x)=B(x) .

Заметим, что при указанных условиях уравнение A(x)·C(x)=B(x)·C(x) может иметь корни, посторонние для исходного уравнения A(x)=B(x) . Ими являются все такие числа из ОДЗ для исходного уравнения, которые обращают выражение C(x) в нуль (все числа, обращающие в нуль выражение C(x) являются корнями уравнения A(x)·C(x)=B(x)·C(x) , так как их подстановка в указанное уравнение дает верное числовое равенство 0=0 ), но которые не являются корнями уравнения A(x)=B(x) . Уравнения A(x)=B(x) и A(x)·C(x)=B(x)·C(x) при указанных условиях будут равносильными тогда, когда все числа из ОДЗ для уравнения A(x)=B(x) , обращающие в нуль выражение C(x) , являются корнями уравнения A(x)=B(x) .

Итак, умножение обеих частей уравнения на одно и то же выражение, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, и которое обращается в нуль на ОДЗ для исходного уравнения, в общем случае приводит к уравнению-следствию, то есть, может привести к появлению посторонних корней.

Приведем пример для иллюстрации. Возьмем уравнение x+3=4 . Его единственным корнем служит число 1 . Умножим обе части этого уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для исходного уравнения, например, на x·(x−1) . Это выражение обращается в нуль при x=0 и x=1 . Умножение обеих частей уравнения на это выражение даст нам уравнение (x+3)·x·(x−1)=4·x·(x−1) . Полученное уравнение имеет два корня: 1 и 0 . Число 0 – это посторонний корень для исходного уравнения, появившийся в результате проведенного преобразования.

Преобразования, проведение которых может привести к потере корней

Некоторые преобразования из списка основных преобразований при определенных условиях могут привести к потере корней. Например, при делении обеих частей уравнения x·(x−2)=x−2 на одно и то же выражение x−2 происходит потеря корня. Действительно, в результате проведения такого преобразования получается уравнение x=1 с единственным корнем, которым является число 1 , а исходное уравнение имеет два корня 1 и 2 .

Нужно отчетливо понимать, когда происходит потеря корней в результате проведения преобразований, чтобы при решении уравнений не терять корни. Давайте разбираться с этим.

В результате проведения указанных преобразований потеря корней может произойти тогда и только тогда, когда ОДЗ для преобразованного уравнения оказывается уже, чем ОДЗ для исходного уравнения.

Для доказательства этого утверждения нужно обосновать два момента. Во-первых, нужно доказать, что если в результате проведения указанных преобразований уравнения сужается ОДЗ, то может произойти потеря корней. И, во-вторых, нужно обосновать, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения.

Если ОДЗ для уравнения, полученного в результате преобразования, уже, чем ОДЗ для исходного уравнения, то, естественно, ни один корень исходного уравнения, находящийся вне ОДЗ для полученного уравнения, не может быть корнем уравнения, полученного в результате проведения преобразования. Значит, все эти корни будут потеряны при переходе от исходного уравнения к уравнению, ОДЗ для которого уже, чем ОДЗ для исходного уравнения.

Теперь обратно. Докажем, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения. Это можно сделать методом от противного. Предположение о том, что в результате проведения указанных преобразований происходит потеря корней, но не сужается ОДЗ, противоречит утверждениям, доказанным в предыдущих пунктах. Действительно, из этих утверждений следует, что если при проведении указанных преобразований не сужается ОДЗ, то получаются или равносильные уравнения или уравнения-следствия, значит, не может происходить потеря корней.

Итак, причиной возможной потери корней при проведении основных преобразований уравнений выступает сужение ОДЗ. Понятно, что, решая уравнения, мы не должны терять корни. Здесь, естественно, возникает вопрос: «Что же делать, чтобы не терять корни при преобразовании уравнений»? Ответим на него в следующем пункте. А сейчас давайте пробежимся по списку основных преобразований уравнений, чтобы более детально посмотреть, какие преобразования могут привести к потере корней.

  • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.

Если заменить выражение в левой или правой части уравнения тождественно равным выражением, ОДЗ для которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ, и из-за этого могут быть потеряны корни. Наиболее часто к сужению ОДЗ и, как следствие, к возможной потере корней приводят замены выражений в левой или правой части уравнений тождественно равными им выражениями, проводящиеся на базе некоторых свойств корней, степеней, логарифмов и некоторых тригонометрических формул. Например, замена выражения в левой части уравнения тождественно равным ей выражением , сужает ОДЗ и приводит к потере корня −16 . Аналогично, замена выражения в левой части уравнения тождественно равным ему выражением приводит к уравнению , ОДЗ для которого уже, чем ОДЗ для исходного уравнения, что влечет потерю корня −3 .

  • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.

Это преобразование равносильное, поэтому, при его проведении не могут быть потеряны корни.

  • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.

Если прибавить или вычесть выражение, ОДЗ которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ и, как следствие, к возможной потере корней. Это стоит иметь в виду. Но здесь стоит отметить, что на практике обычно приходится прибегать к прибавлению или вычитанию выражений, которые присутствуют в записи исходного уравнения, что не приводит к изменению ОДЗ и не влечет потери корней.

  • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.

Это преобразование уравнения равносильное, поэтому, в результате его проведения корни не теряются.

  • Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.

Это преобразование тоже равносильное, и из-за него потеря корней не происходит.

  • Умножение или деление обеих частей уравнения на одно и то же выражение.

Это преобразование может приводить к сужению ОДЗ в двух случаях: когда ОДЗ для выражения, на которое проводится умножение или деление, уже, чем ОДЗ для исходного уравнения, и когда проводится деление на выражение, обращающееся в нуль на ОДЗ для исходного уравнения. Заметим, что на практике обычно не приходится прибегать к умножению и делению обеих частей уравнения на выражение с более узкой ОДЗ. А вот с делением на выражение, обращающееся на ОДЗ для исходного уравнения в нуль, иметь дело приходиться. Существует метод, позволяющий справляться с потерей корней при таком делении, о нем мы расскажем в следующем пункте этой статьи.

Как избежать потери корней?

Если для преобразования уравнений использовать только преобразования из списка основных преобразований и при этом не допускать сужения ОДЗ, то потери корней не произойдет.

Означает ли это, что нельзя проводить какие-либо другие преобразования уравнений? Нет, не означает. Если придумать какое-нибудь еще преобразование уравнения и полностью описать его, то есть, указать, когда оно приводит к равносильным уравнениям, когда – к уравнениям-следствиям, и когда может приводить к потере корней, то его вполне можно будет взять на вооружение.

Стоит ли полностью отказываться от преобразований, сужающих ОДЗ? Не стоит этого делать. В своем арсенале не помешает оставить преобразования, при которых из ОДЗ для исходного уравнения выпадает конечное количество чисел. Почему от таких преобразований не стоит отказываться? Потому что существует метод, позволяющий в таких случаях избежать потери корней. Он состоит в отдельной проверке чисел, выпадающих из ОДЗ, на предмет того, есть ли среди них корни исходного уравнения. Проверить это можно подстановкой этих чисел в исходное уравнение. Те из них, которые при подстановке дают верное числовое равенство, являются корнями исходного уравнения. Их нужно включить в ответ. После такой проверки можно спокойно проводить задуманное преобразование без боязни потерять корни.

Типичным преобразованием, при котором ОДЗ для уравнения сужается на несколько чисел, является деление обеих частей уравнения на одно и то же выражение, которое обращается в нуль в нескольких точках из ОДЗ для исходного уравнения. Такое преобразование лежит в основе метода решения возвратных уравнений. Но оно используется и при решении уравнений других видов. Приведем пример.

Решение уравнения можно провести методом введения новой переменной. Чтобы ввести новую переменную, надо разделить обе части уравнения на 1+x . Но при таком делении может произойти потеря корня, так как хотя ОДЗ для выражения 1+x не уже, чем ОДЗ для исходного уравнения, но выражение 1+x обращается в нуль при x=−1 , а это число принадлежит ОДЗ для исходного уравнения. Значит, может произойти потеря корня −1 . Чтобы исключить потери корня, следует отдельно проверить, является ли −1 корнем исходного уравнения. Для этого можно подставить −1 в исходное уравнение и посмотреть, какое равенство при этом получается. В нашем случае подстановка дает равенство , что то же самое 4=0 . Это равенство неверное, значит −1 не является корнем исходного уравнения. После такой проверки можно осуществлять задуманное деление обеих частей уравнения на 1+x , не опасаясь за то, что может произойти потеря корней.

В заключение этого пункта еще раз обратимся к уравнениям из предыдущего пункта и . Преобразование этих уравнений на базе тождеств и приводит к сужение ОДЗ, а это влечет потерю корней. В этом пункте мы сказали, что для того, чтобы не терять корни, нужно отказаться от преобразований, сужающих ОДЗ. Значит, от указанных преобразований нужно отказаться. А как же быть? Можно провести преобразования не на базе тождеств и , из-за которых сужается ОДЗ, а на базе тождеств и . В результате перехода от исходных уравнений и к уравнениям и не происходит сужения ОДЗ, значит, не будут потеряны корни.

Здесь же особо отметим, что при замене выражений тождественно равными выражениями нужно тщательно следить за тем, чтобы выражения были именно тождественно равными. Например, в уравнении нельзя заменить выражение x+3 выражением с целью упрощения вида левой части до , так как выражения x+3 и не являются тождественно равными, ведь их значения не совпадают при x+3 . В нашем примере такое преобразование приводит к потере корня. А в общем случае замена выражения не тождественно равным выражением приводит к уравнению, которое не позволяет получить решение исходного уравнения.

Преобразования уравнений, к которым не следует прибегать

Преобразований, которые упоминаются в этой статье, обычно достаточно для нужд практики. То есть, не стоит сильно озадачиваться придумыванием каких-либо еще преобразований, лучше сосредоточиться на правильном использовании уже проверенных.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.


источники:

http://www.cleverstudents.ru/equations/transformation_of_equations.html

http://spacemath.xyz/obshhie-svedeniya-ob-uravneniyah/