Как научиться определять тип дифференциального уравнения

Типы дифференциальных уравнений

Далее в тексте – функции своих аргументов. Штрих ′ означает производную по аргументу. – постоянные.

Дифференциальные уравнения первого порядка

Особенности дифференциальных уравнений первого порядка

При решении уравнений первого порядка функцию y и переменную x следует считать равноправными. То есть решение может быть в виде так и в виде .

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Уравнения с разделяющимися переменными

;
. Подробнее
Приводящиеся к уравнениям с разделяющимися переменными:
Подробнее

Однородные уравнения

Однородные уравнения не меняют свой вид при замене
,
где t – постоянная. При такой замене производная не меняется:
.
В общем виде обобщенно однородные уравнения можно записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности, то есть обладающие следующим свойством:
.
Общий вид однородных уравнений также можно выразить через произвольную функцию:
. Подробнее

Приводящиеся к однородным
,
где и – однородные функции с равными показателями однородности. В общем виде такие уравнения можно выразить через произвольную функцию:
. Подробнее

Обобщенно однородные уравнения не меняют свой вид при замене
,
где t – постоянная, . Для производной такая замена выглядит так:
.
В общем виде обобщенно однородные уравнения можно записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности.
Обобщенно однородные уравнения также можно записать через произвольную функцию:
. Подробнее

Линейные дифференциальные уравнения и приводящиеся к ним

  • Линейное по y:
  • Линейное по f(y):
  • Линейное по x:
  • Линейное по f(x):

Уравнения Риккати

Уравнения Якоби

Уравнения в полных дифференциалах

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то следует попытаться найти интегрирующий множитель, чтобы свести его к уравнению в полных дифференциалах:
;
. Подробнее

Уравнения, не разрешенные относительно производной y′

Уравнения, допускающие решение относительно производной y′

Сначала нужно попытаться разрешить уравнение относительно производной y′ . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, не разрешенные относительно производной y′

Уравнения, допускающие разложение на множители:
.
Подробнее
Уравнения, не содержащие x и y:
. Подробнее
Уравнения, не содержащие x или y:
, или . Подробнее

Уравнения, разрешенные относительно зависимой переменной y

Уравнения Клеро:
. Подробнее
Уравнения Лагранжа:
. Подробнее
Уравнения, приводящиеся к уравнению Бернулли:
;
. Подробнее

Дифференциальные уравнения высших порядков

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее
Разрешенные относительно переменной:
. Подробнее

Уравнения, содержащие только производные порядков n и n-1

Общий случай:
. Подробнее
Разрешенные относительно младшей производной:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее

Уравнения, содержащие только производные порядков n и n-2

Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее

Дифференциальные уравнения, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y (и возможно несколько первых производных):
, или
. Подробнее
Уравнения, не содержащие независимую переменную x:
. Подробнее
Уравнения, однородные относительно функции и ее производных y, y′, y′′, . :
, причем
. Подробнее
Обобщенно однородные уравнения относительно переменных x, y:
, причем
. Подробнее
Дифференциальные уравнения с полной производной:
. Подробнее

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами:
. Подробнее
Линейные неоднородные уравнения с постоянными коэффициентами:
.
Решение методом Бернулли (двух функций)
Решение методом Лагранжа (вариация постоянных)
Решение линейной подстановкой
Линейные неоднородные уравнения со специальной неоднородной частью:
,
где – многочлены степеней и . Подробнее
Уравнения Эйлера:
. Подробнее

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 12-05-2012 Изменено: 26-11-2021

Что такое дифференциальное уравнение и зачем оно нужно?

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников.

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно «разделить переменные», то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице: Дифференциальные уравнения с решениями онлайн.

Дифференциальные уравнения (ДУ) — методы и примеры решения уравнений разного порядка

Многих людей, хоть как-то изучавших курс высшей математики в учебном заведении, приводит в ужас словосочетание «дифференциальные уравнения». Согласно строгому научному определению в книгах – так именуются математические выражения, где в состав входят функция, ее производная или параметр. Имеется достаточно большое количество типов этих равенств, рассмотрим подходы к их решению так, чтобы они были понятны даже для «чайников».

Дифференциальные уравнения первого порядка

Обыкновенное диффуравнение (ДУ) 1-го порядка задается относительно некой функции, имеющей вид у(х):

здесь, F(x,y,y ’ ) – это функция, задающаяся для трех аргументов (в этом примере для х, у и у ’ ).Таково строгое математическое определение ДУ.

Для примера можно привести следующее уравнение:

функция вида F(x,y,p) = xp — y 2

Простейшие ДУ первого порядка

Общепринятый механизм нахождения решения таких выражений (чаще всего похожи на y’ = f(x)) – это интегрирование левой и правой части такого уравнения на заданном промежутке Х.

После интегрирования получим такое выражение:

Воспользовавшись свойствами, которые относятся к интегральным выражениям, упростим выражение до вида:

здесь, F(x) – это первообразная от функции f(x) на заданном интервале Х, а N – случайным образом выбранная константа.

Задача №1

Необходимо определить все возможные варианты решения диффуравнения, имеющего вид

Последовательно рассмотрим решение.

Представленное диффуравнение может иметь смысл только при действительных значениях параметра х. Примем условие, что x ≠ 0, тогда выражение легко преобразовывается в следующее:

Если же, напротив, принять, что х = 0, то выражение приобретет следующий вид, характерный для любых функций y’, удовлетворяющих данному условию:

Можно заключить, что решением при справедливости условия х = 0 будет любая функция у, найденная, когда аргумент равен нулю. Остается только проинтегрировать полученное диффуравнение:

Данное выражение – это решение для приведенного диффуравнения.

ДУ с разделяющимися переменными

Среди дифуров 1-го порядка можно выделить такие, где все переменные х и у можно преобразовать так, что они окажутся по разные стороны от знака равенства.

Соответственно уравнения, где путем преобразований это возможно сделать, называются диффуравнениями с разделяющимися переменными.

Их общий вид следующий:

После проведения нескольких преобразований, это выражение может быть сведено к следующему виду:

При составлении преобразований необходимо внимательно разделять переменные, не допуская, чтобы функции обращались в ноль, иначе возможна потеря некоторых значений.

Задача №2

Рассмотрим обыкновенный пример. Необходимо определить все возможные решения диффуравнения y’ = y(x 2 + e x )

Как решать? В первую очередь проводим разделение переменных в разные части уравнения:

Данные преобразования справедливы, если у ≠ 0.

Если рассмотреть вариант решения при нулевом показателе функции, то можно заметить ,что

Это означает, что y = 0 – одно из возможных решений задачи.

Рассмотрим другие варианты решений, для чего произведем интегрирование диффуравнения:

Финальная часть преобразований будет вторым решением диффуравнения. Останется только потенциировать это выражение, чтобы привести его к более явному виду:

Правильными решениями, в результате преобразований, будут:

Кроме того, можно воспользоваться онлайн системой для нахождения ответа. Подробные объяснения даны в решебниках Филиппова и Понтрягина.

Линейные неоднородные ДУ первого порядка

Линейные неоднородные уравнения – это такие выражения, которые можно записать в формате y’ + b(x)y = f(x), при этом функции b(x) и f(x) – непрерывные.

Основной принцип при нахождении решения сводится к следующим шагам:

Первым делом для уравнения необходимо произвести поиск решения, которое бы соответствовало линейному однородному диффуравнению.

Затем необходимо варьировать произвольной постоянной, производя ее замену на функцию.

На финальном этапе функция подставляется в первоначальное уравнение, откуда, решая ДУ, получается ответ.

Задача №3

Рассмотрим применение методики решения на примере.

Необходимо найти решение дифференциального уравнения вида

Решение заключается в следующем. Первоначально примем, что y = m∗n, следовательно, получается:

На следующем этапе нужно определить, что такое m (оно обязательно не должно быть равным нулю), при котором все выражение внутри скобок будет равно нулю.

Получаем дополнительное дифференциальное уравнение:

Теперь необходимо принять одно из частных решений n = x 2 + 1, которое соответствует равенству С2 — С1=0.

Выполняем оставшиеся преобразования:

Вполне очевидно, что ответом на условие задачи будет функция:

Задача Коши для ДУ

При рассмотрении решения практически любого диффуравнения, имеющего вид F(m,n,n’) = 0, становится очевидно, что это бесконечно большое количество решений (это следствие самого возникновения диффуравнения).

На данном этапе математики сталкиваются с вопросом о выборе конкретного решения и способе его выделения из множества.Иными словами, если представить решения в виде бесконечного множества интегральных кривых, то необходимо найти среди них нужную.

Чтобы это сделать, необходимо рассмотреть плоскость Xoy, где должна быть задана некая точка D0, имеющая координаты (x0, y0) – именно через них и должна пройти интегральная кривая, чтобы стать искомым ответом.

Когда мы с самого начала задаем точку D0(x0, y0) – это означает, задание начального условия y(x0) = y0. Диффуравнение, для которого определено начальное условие в представленном формате, называется уравнением с заданной задачей Коши.


Задача №4

Рассмотрим примеры с объяснениями. Необходимо определить решения задачи Коши вида:

Ход решения строится в три этапа. На первом этапе решаем диффуравнение y’ = xy 2 стандартным методом. Его решение приводить не будем, приведем только ответ:

Производим подстановку начального значения (х = 0, у = 1) в решение и находим значение С:

Производим подстановку полученного значения в ответ диффуравнения и получаем одно из частных решений:

Полученная функция – ответ на задачу Коши в этом примере.

Дифференциальные уравнения Бернулли

ДУ Бернулли обычно представлено в следующем виде:

Обязательное условие, что функции b(x) и c(x) – являются непрерывными.


Задача №5

Рассмотрим общее решение данного типа на примере. Необходимо выполнить поиск всех возможных решений уравнения:

Во время оценки уравнения в нем можно идентифицировать ДУ Бернулли с параметром ½. Оно легко сводится к линейному ДУ, для этого достаточно заменить выражения:

Выполним деление по начальному уравнению Бернулли на

и выполним необходимые преобразования:

Произведем замену параметра х на параметр у:

Теперь вычисляем интегрирующий модуль для данной функции, он будет равен:

Теперь производим ряд преобразований для вычисления решения диффуравнения:

Переписываем полученную функцию в неявном виде и получаем ответ:

Дифференциальные уравнения второго порядка

Отличить ДУ 2-го порядка от таковых 1-го порядка достаточно просто – в их составе присутствует вторая производная (y’’) и не содержится производных более высокого уровня.

Общий вид таких уравнений таков:

Линейные однородные ДУ второго порядка с постоянными коэффициентами

Определение линейных дифференциальных однородных уравнений 2-го порядка крайне просто – они имеют вид:

При это важным условием теории является причисление r и k к действительным числам.

Задача №6

Рассмотрим решение однородных диффуравнений 2-го порядка с постоянными коэффициентами на примере.

Найти решение диффуравнения 2-го порядка вида:

Во всех таких случаях начинаем с поиска характеристического уравнения:

Методы решения данного уравнения достаточно простые, можно воспользоваться калькулятором или быстро решить на листочке, поэтому их приводить не будем, запишем лишь корни – 1, 5.

Поскольку это все действительные, неодинаковые числа, то можно записать функцию-решение в следующем виде:

Линейные неоднородные ДУ второго порядка с постоянными коэффициентами

Общий вид неоднородных диффуравнений второго порядка легко определить по представленному образцу:

Переменные r и k должны быть вещественными и постоянными числами.

Задача №7

Рассмотрим подробное решение. Необходимо определить все решения для уравнения y» + y = cos x.

На первом этапе находим в составе неоднородного уравнения его однородную часть – это будет y» — y = 0.

Для него уже выполняем поиск характеристического уравнения – оно будет иметь вид k 2 + 1 = 0.

Корнями для данного характеристического уравнения являются k1 = -i и k2 = i.

Исходя из этого записываем решение для однородного уравнения:

Из-за отсутствия параметра с производной первого порядка также будет справедливо записать:

Теперь остается только подставить найденные выражения:

Частное и общее решение для уравнения можно записать:

Дифференциальные уравнения высших порядков

Дифференциальные однородные уравнения высших порядков легко отличить, если они совпадают со следующим видом:

Для неоднородных справедлив другой формат:

Для выбора корректного пути решения ДУ, необходимо четко и правильно определить его тип.

Для этого необходимо решить уравнение относительно его производной и проверить, возможно ли разложение функции на множители. После этого достаточно сравнить с одним из типов, приведенным в данной статье.


источники:

http://www.matburo.ru/mart_sub.php?p=art_du

http://nauka.club/matematika/algebra/differentsialnye-uravneniya.html