Как найти коэффициент детерминации из уравнения регрессии

Пример нахождения коэффициента детерминации

Коэффициент детерминации рассчитывается для оценки качества подбора уравнения регрессии. Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 50%. Модели с коэффициентом детерминации выше 80% можно признать достаточно хорошими. Значение коэффициента детерминации R 2 = 1 означает функциональную зависимость между переменными.

Для линейной зависимости коэффициент детерминации равен квадрату коэффициента корреляции rxy: R 2 = rxy 2 .
2 «>Рассчитать свое значение
Например, значение R 2 = 0.83, означает, что в 83% случаев изменения х приводят к изменению y . Другими словами, точность подбора уравнения регрессии — высокая.

В общем случае, коэффициент детерминации находится по формуле: или
В этой формуле указаны дисперсии:
,
где ∑(y- y ) 2 — общая сумма квадратов отклонений;
— сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
— остаточная сумма квадратов отклонений.

В случае нелинейной регрессии коэффициент детерминации рассчитывается через этот калькулятор. При множественной регрессии, коэффициент детемрминации можно найти через сервис Множественная регрессия

Пример . Дано:

  • доля денежных доходов, направленных на прирост сбережений во вкладах, займах, сертификатах и в покупку валюты, в общей сумме среднедушевого денежного дохода, % (Y)
  • среднемесячная начисленная заработная плата, тыс. руб. (X)

Следует выполнить: 1. построить поле корреляции и сформировать гипотезу о возможной форме и направлении связи; 2. рассчитать параметры уравнений линейной и A1; 3. выполнить расчет прогнозного значения результата, предполагая, что прогнозные значения факторов составят B2 % от их среднего уровня; 4. оценить тесноту связи с помощью показателей корреляции и детерминации, проанализировать их значения; 5. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом; 6. Оценить с помощью средней ошибки аппроксимации качество уравнений; 7. Оценить надежность уравнений в целом через F-критерий Фишера для уровня значимости а = 0,05. По значениям характеристик, рассчитанных в пп. 5,6 и данном пункте, выберете лучшее уравнение регрессии и дайте его обоснование.

  • Решение онлайн
  • Видео решение

Уравнение имеет вид y = ax + b
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая.
Уравнение регрессии

Коэффициент детерминации для линейной регрессии равен квадрату коэффициента корреляции.
R 2 = 0.91 2 = 0.83, т.е. в 83% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

xyx 2y 2x ∙ yy(x)(y-y cp ) 2(y-y(x)) 2(x-x p ) 2
15.1255228.01650253850.5505.26527451.1762630.22420.25
17261289681214437549.38518772.0783161.41345.96
12293144858493516433.28473699.5319678.51556.96
10310100961003100386.84450587.755904.58655.36
741425547620306251054501872.88196906.672006001474.56
831985688939402251647552081.861007497.339381.62246.76
852549722564974012166652128.32457813.93176990.62440.36
812012656140481441629722035.421062428.38548.492061.16
221562484243984434364665.47337260.88803758.38184.96
103861001489963860386.84354332.480.71655.36
4383161466891532247.52357913.0318353.53998.56
14.1354.1198.81125386.814992.81482.04393327.5816368.87462.25
427.211775.127710.8219692405.81709494.3111775.18137990.811397376.912502.5
2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим

Анализ точности определения оценок коэффициентов регрессии

S a = 3.3432
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-557.64;913.38)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (6.95>1.812).

Статистическая значимость коэффициента регрессии b не подтверждается (0.96 Fkp, то коэффициент детерминации статистически значим

Расчет коэффициента детерминации в Microsoft Excel

Одним из показателей, описывающих качество построенной модели в статистике, является коэффициент детерминации (R^2), который ещё называют величиной достоверности аппроксимации. С его помощью можно определить уровень точности прогноза. Давайте узнаем, как можно произвести расчет данного показателя с помощью различных инструментов программы Excel.

Вычисление коэффициента детерминации

В зависимости от уровня коэффициента детерминации, принято разделять модели на три группы:

  • 0,8 – 1 — модель хорошего качества;
  • 0,5 – 0,8 — модель приемлемого качества;
  • 0 – 0,5 — модель плохого качества.

В последнем случае качество модели говорит о невозможности её использования для прогноза.

Выбор способа вычисления указанного значения в Excel зависит от того, является ли регрессия линейной или нет. В первом случае можно использовать функцию КВПИРСОН, а во втором придется воспользоваться специальным инструментом из пакета анализа.

Способ 1: вычисление коэффициента детерминации при линейной функции

Прежде всего, выясним, как найти коэффициент детерминации при линейной функции. В этом случае данный показатель будет равняться квадрату коэффициента корреляции. Произведем его расчет с помощью встроенной функции Excel на примере конкретной таблицы, которая приведена ниже.

  1. Выделяем ячейку, где будет произведен вывод коэффициента детерминации после его расчета, и щелкаем по пиктограмме «Вставить функцию».

Запускается Мастер функций. Перемещаемся в его категорию «Статистические» и отмечаем наименование «КВПИРСОН». Далее клацаем по кнопке «OK».

Происходит запуск окна аргументов функции КВПИРСОН. Данный оператор из статистической группы предназначен для вычисления квадрата коэффициента корреляции функции Пирсона, то есть, линейной функции. А как мы помним, при линейной функции коэффициент детерминации как раз равен квадрату коэффициента корреляции.

Синтаксис этого оператора такой:

Таким образом, функция имеет два оператора, один из которых представляет собой перечень значений функции, а второй – аргументов. Операторы могут быть представлены, как непосредственно в виде значений, перечисленных через точку с запятой (;), так и в виде ссылок на диапазоны, где они расположены. Именно последний вариант и будет использован нами в данном примере.

Устанавливаем курсор в поле «Известные значения y». Выполняем зажим левой кнопки мышки и производим выделение содержимого столбца «Y» таблицы. Как видим, адрес указанного массива данных тут же отображается в окне.

Аналогичным образом заполняем поле «Известные значения x». Ставим курсор в данное поле, но на этот раз выделяем значения столбца «X».

После того, как все данные были отображены в окне аргументов КВПИРСОН, клацаем по кнопке «OK», расположенной в самом его низу.

  • Как видим, вслед за этим программа производит расчет коэффициента детерминации и выдает результат в ту ячейку, которая была выделена ещё перед вызовом Мастера функций. В нашем примере значение вычисляемого показателя получилось равным 1. Это значит, что представленная модель абсолютно достоверная, то есть, исключает погрешность.
  • Способ 2: вычисление коэффициента детерминации в нелинейных функциях

    Но указанный выше вариант расчета искомого значения можно применять только к линейным функциям. Что же делать, чтобы произвести его расчет в нелинейной функции? В Экселе имеется и такая возможность. Её можно осуществить с помощью инструмента «Регрессия», который является составной частью пакета «Анализ данных».

      Но прежде, чем воспользоваться указанным инструментом, следует активировать сам «Пакет анализа», который по умолчанию в Экселе отключен. Перемещаемся во вкладку «Файл», а затем переходим по пункту «Параметры».

    В открывшемся окне производим перемещение в раздел «Надстройки» при помощи навигации по левому вертикальному меню. В нижней части правой области окна располагается поле «Управление». Из списка доступных там подразделов выбираем наименование «Надстройки Excel…», а затем щелкаем по кнопке «Перейти…», расположенной справа от поля.

    Производится запуск окна надстроек. В центральной его части расположен список доступных надстроек. Устанавливаем флажок около позиции «Пакет анализа». Вслед за этим требуется щелкнуть по кнопке «OK» в правой части интерфейса окна.

    Пакет инструментов «Анализ данных» в текущем экземпляре Excel будет активирован. Доступ к нему располагается на ленте во вкладке «Данные». Перемещаемся в указанную вкладку и клацаем по кнопке «Анализ данных» в группе настроек «Анализ».

    Активируется окошко «Анализ данных» со списком профильных инструментов обработки информации. Выделяем из этого перечня пункт «Регрессия» и клацаем по кнопке «OK».

    Затем открывается окно инструмента «Регрессия». Первый блок настроек – «Входные данные». Тут в двух полях нужно указать адреса диапазонов, где находятся значения аргумента и функции. Ставим курсор в поле «Входной интервал Y» и выделяем на листе содержимое колонки «Y». После того, как адрес массива отобразился в окне «Регрессия», ставим курсор в поле «Входной интервал Y» и точно таким же образом выделяем ячейки столбца «X».

    Около параметров «Метка» и «Константа-ноль» флажки не ставим. Флажок можно установить около параметра «Уровень надежности» и в поле напротив указать желаемую величину соответствующего показателя (по умолчанию 95%).

    В группе «Параметры вывода» нужно указать, в какой области будет отображаться результат вычисления. Существует три варианта:

    • Область на текущем листе;
    • Другой лист;
    • Другая книга (новый файл).

    Остановим свой выбор на первом варианте, чтобы исходные данные и результат размещались на одном рабочем листе. Ставим переключатель около параметра «Выходной интервал». В поле напротив данного пункта ставим курсор. Щелкаем левой кнопкой мыши по пустому элементу на листе, который призван стать левой верхней ячейкой таблицы вывода итогов расчета. Адрес данного элемента должен высветиться в поле окна «Регрессия».

    Группы параметров «Остатки» и «Нормальная вероятность» игнорируем, так как для решения поставленной задачи они не важны. После этого клацаем по кнопке «OK», которая размещена в правом верхнем углу окна «Регрессия».

  • Программа производит расчет на основе ранее введенных данных и выводит результат в указанный диапазон. Как видим, данный инструмент выводит на лист довольно большое количество результатов по различным параметрам. Но в контексте текущего урока нас интересует показатель «R-квадрат». В данном случае он равен 0,947664, что характеризует выбранную модель, как модель хорошего качества.
  • Способ 3: коэффициент детерминации для линии тренда

    Кроме указанных выше вариантов, коэффициент детерминации можно отобразить непосредственно для линии тренда в графике, построенном на листе Excel. Выясним, как это можно сделать на конкретном примере.

      Мы имеем график, построенный на основе таблицы аргументов и значений функции, которая была использована для предыдущего примера. Произведем построение к нему линии тренда. Кликаем по любому месту области построения, на которой размещен график, левой кнопкой мыши. При этом на ленте появляется дополнительный набор вкладок – «Работа с диаграммами». Переходим во вкладку «Макет». Клацаем по кнопке «Линия тренда», которая размещена в блоке инструментов «Анализ». Появляется меню с выбором типа линии тренда. Останавливаем выбор на том типе, который соответствует конкретной задаче. Давайте для нашего примера выберем вариант «Экспоненциальное приближение».

    Эксель строит прямо на плоскости построения графика линию тренда в виде дополнительной черной кривой.

    Теперь нашей задачей является отобразить собственно коэффициент детерминации. Кликаем правой кнопкой мыши по линии тренда. Активируется контекстное меню. Останавливаем выбор в нем на пункте «Формат линии тренда…».

    Для выполнения перехода в окно формата линии тренда можно выполнить альтернативное действие. Выделяем линию тренда кликом по ней левой кнопки мыши. Перемещаемся во вкладку «Макет». Клацаем по кнопке «Линия тренда» в блоке «Анализ». В открывшемся списке клацаем по самому последнему пункту перечня действий – «Дополнительные параметры линии тренда…».

    После любого из двух вышеуказанных действий запускается окошко формата, в котором можно произвести дополнительные настройки. В частности, для выполнения нашей задачи необходимо установить флажок напротив пункта «Поместить на диаграмму величину достоверности аппроксимации (R^2)». Он размещен в самом низу окна. То есть, таким образом мы включаем отображение коэффициента детерминации на области построения. Затем не забываем нажать на кнопку «Закрыть» внизу текущего окна.

    Значение достоверности аппроксимации, то есть, величина коэффициента детерминации, будет отображено на листе в области построения. В данном случае эта величина, как видим, равна 0,9242, что характеризует аппроксимацию, как модель хорошего качества.

    Абсолютно точно таким образом можно устанавливать показ коэффициента детерминации для любого другого типа линии тренда. Можно менять тип линии тренда, произведя переход через кнопку на ленте или контекстное меню в окно её параметров, как было показано выше. Затем уже в самом окне в группе «Построение линии тренда» можно переключиться на другой тип. Не забываем при этом контролировать, чтобы около пункта «Поместить на диаграмму величину достоверности аппроксимации» был установлен флажок. Завершив вышеуказанные действия, щелкаем по кнопке «Закрыть» в нижнем правом углу окна.

    При линейном типе линия тренда уже имеет значение достоверности аппроксимации равное 0,9477, что характеризует эту модель, как ещё более достоверную, чем рассматриваемую нами ранее линию тренда экспоненциального типа.

    Таким образом, переключаясь между разными типами линии тренда и сравнивая их значения достоверности аппроксимации (коэффициент детерминации), можно найти тот вариант, модель которого наиболее точно описывает представленный график. Вариант с самым высоким показателем коэффициента детерминации будет наиболее достоверным. На его основе можно строить самый точный прогноз.

    Например, для нашего случая опытным путем удалось установить, что самый высокий уровень достоверности имеет полиномиальный тип линии тренда второй степени. Коэффициент детерминации в данном случае равен 1. Это говорит о том, что указанная модель абсолютно достоверная, что означает полное исключение погрешностей.

    Но, в то же время, это совсем не значит, что для другого графика тоже наиболее достоверным окажется именно этот тип линии тренда. Оптимальный выбор типа линии тренда зависит от типа функции, на основании которой был построен график. Если пользователь не обладает достаточным объемом знаний, чтобы «на глаз» прикинуть наиболее качественный вариант, то единственным выходом определения лучшего прогноза является как раз сравнение коэффициентов детерминации, как было показано на примере выше.

    В Экселе существуют два основных варианта вычисления коэффициента детерминации: использование оператора КВПИРСОН и применение инструмента «Регрессия» из пакета инструментов «Анализ данных». При этом первый из этих вариантов предназначен для использования только в процессе обработки линейной функции, а другой вариант можно использовать практически во всех ситуациях. Кроме того, существует возможность отображения коэффициента детерминации для линии трендов графиков в качестве величины достоверности аппроксимации. С помощью данного показателя имеется возможность определить тип линии тренда, который располагает самым высоким уровнем достоверности для конкретной функции.

    Помимо этой статьи, на сайте еще 12686 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Коэффициент детерминации: формулы, расчет, интерпретация, примеры

    Коэффициент детерминации: формулы, расчет, интерпретация, примеры — Наука

    Содержание:

    В коэффициент детерминации — число от 0 до 1, которое представляет долю точек (X, Y), которые следуют за линией регрессии соответствия набора данных с двумя переменными.

    Он также известен как степень соответствия и обозначается R 2 . Для его вычисления берется частное между дисперсией данных Ŷi, оцененных с помощью регрессионной модели, и дисперсией данных Yi, соответствующих каждому Xi данных.

    Если 100% данных находятся на линии функции регрессии, то коэффициент детерминации будет равен 1.

    Напротив, если для набора данных и некоторой функции настройки коэффициент R 2 оказывается равным 0,5, то можно сказать, что посадка на 50% удовлетворительна или хороша.

    Аналогично, когда регрессионная модель возвращает значения R 2 ниже 0,5, это означает, что выбранная функция настройки не адаптируется удовлетворительно к данным, поэтому необходимо искать другую функцию настройки.

    И когда ковариация или коэффициент корреляции стремится к нулю, то переменные X и Y в данных не связаны, и поэтому R 2 он также будет стремиться к нулю.

    Как рассчитать коэффициент детерминации?

    В предыдущем разделе было сказано, что коэффициент детерминации рассчитывается путем нахождения частного между дисперсиями:

    -Оценено функцией регрессии переменной Y

    -То переменной Yi, соответствующей каждой переменной Xi из N пар данных.

    Математически это выглядит так:

    Из этой формулы следует, что R 2 представляет собой долю дисперсии, объясняемую регрессионной моделью. В качестве альтернативы R можно рассчитать 2 используя следующую формулу, полностью эквивалентную предыдущей:

    Где Sε представляет собой дисперсию остатков εi = Ŷi — Yi, а Sy представляет собой дисперсию набора значений Yi данных. Для определения Ŷi применяется функция регрессии, что означает утверждение, что Ŷi = f (Xi).

    Дисперсия набора данных Yi, где i от 1 до N, рассчитывается следующим образом:

    Sy = [Σ (Yi — ) 2 ) / (N-1)]

    А затем поступаем аналогичным образом для Sŷ или для Sε.

    Иллюстративный случай

    Чтобы показать детали того, как расчет коэффициент детерминации Мы возьмем следующий набор из четырех пар данных:

    Для этого набора данных предлагается линейная регрессия, полученная с помощью метода наименьших квадратов:

    Применяя эту функцию регулировки, крутящие моменты получаются:

    Затем мы вычисляем среднее арифметическое для X и Y:

    = (1 + 2 + 3 + 4) / 4 = 2.5

    = (1 + 3 + 6 + 7) / 4 = 4.25

    Дисперсия Sy

    Sy = [(1–4,25) 2 + (3 – 4.25) 2 + (6 – 4.25) 2 +…. ….(7 – 4.25) 2 ] / (4-1)=

    = [(-3.25) 2 + (-1.25) 2 + (1.75) 2 + (2.75) 2 ) / (3)] = 7.583

    Дисперсия Sŷ

    Sŷ = [(1,1 — 4,25) 2 + (3.2 – 4.25) 2 + (5.3 – 4.25) 2 +…. ….(7.4 – 4.25) 2 ] / (4-1)=

    = [(-3.25) 2 + (-1.25) 2 + (1.75) 2 + (2.75) 2 ) / (3)] = 7.35

    Коэффициент детерминации R 2

    р 2 = Sŷ / Sy = 7,35 / 7,58 = 0,97

    Интерпретация

    Коэффициент детерминации для иллюстративного случая, рассмотренного в предыдущем сегменте, оказался равным 0,98. Другими словами, линейная регулировка через функцию:

    Он на 98% надежен в объяснении данных, с которыми он был получен с использованием метода наименьших квадратов.

    Помимо коэффициента детерминации, есть коэффициент линейной корреляции или также известный как коэффициент Пирсона. Этот коэффициент, обозначаемый какр, рассчитывается по следующей зависимости:

    Здесь числитель представляет собой ковариацию между переменными X и Y, а знаменатель — это произведение стандартного отклонения для переменной X и стандартного отклонения для переменной Y.

    Коэффициент Пирсона может принимать значения от -1 до +1. Когда этот коэффициент стремится к +1, существует прямая линейная корреляция между X и Y. Если вместо этого он стремится к -1, существует линейная корреляция, но когда X увеличивается, Y уменьшается. Наконец, он близок к нулю, между двумя переменными нет корреляции.

    Следует отметить, что коэффициент детерминации совпадает с квадратом коэффициента Пирсона, только если первый был рассчитан на основе линейной аппроксимации, но это равенство не действует для других нелинейных аппроксимаций.

    Примеры

    — Пример 1

    Группа старшеклассников решила определить эмпирический закон для периода маятника в зависимости от его длины. Для достижения этой цели они проводят серию измерений, в которых измеряют время колебания маятника на разной длине, получая следующие значения:

    Длина (м)Период (ы)
    0,10,6
    0,41,31
    0,71,78
    11,93
    1,32,19
    1,62,66
    1,92,77
    33,62

    Требуется построить диаграмму рассеяния данных и выполнить линейную аппроксимацию через регрессию. Также покажите уравнение регрессии и его коэффициент детерминации.

    Решение

    Наблюдается довольно высокий коэффициент детерминации (95%), поэтому можно подумать, что линейная аппроксимация является оптимальной. Однако, если рассматривать точки вместе, оказывается, что они имеют тенденцию изгибаться вниз. Эта деталь не рассматривается в линейной модели.

    — Пример 2

    Для тех же данных в Примере 1 сделайте диаграмму рассеяния данных.В этом случае, в отличие от примера 1, требуется корректировка регрессии с использованием потенциальной функции.

    Также покажите функцию подгонки и ее коэффициент детерминации R 2 .

    Решение

    Потенциальная функция имеет вид f (x) = Ax B , где A и B — константы, определяемые методом наименьших квадратов.

    На предыдущем рисунке показана потенциальная функция и ее параметры, а также коэффициент детерминации с очень высоким значением 99%. Обратите внимание на то, что данные соответствуют кривизне линии тренда.

    — Пример 3

    Используя те же данные из примера 1 и примера 2, выполните полиномиальную аппроксимацию второй степени. Показать график, подобрать полином и коэффициент детерминации R 2 корреспондент.

    Решение

    При подборе полинома второй степени вы можете увидеть линию тренда, которая хорошо соответствует кривизне данных. Кроме того, коэффициент детерминации выше линейного соответствия и ниже потенциального соответствия.

    Сравнение пригодности

    Из трех показанных подгонок тот, у которого самый высокий коэффициент детерминации, является потенциальным подгонкой (пример 2).

    Подгонка потенциала совпадает с физической теорией маятника, которая, как известно, устанавливает, что период маятника пропорционален квадратному корню из его длины, а коэффициент пропорциональности равен 2π / √g, где g — ускорение свободного падения.

    Этот тип потенциального соответствия не только имеет самый высокий коэффициент детерминации, но и показатель степени и константа пропорциональности соответствуют физической модели.

    Выводы

    — Регулировка регрессии определяет параметры функции, которая направлена ​​на объяснение данных с использованием метода наименьших квадратов. Этот метод состоит в минимизации суммы квадратов разницы между значением Y настройки и значением Yi данных для значений Xi данных. Это определяет параметры функции настройки.

    -Как мы видели, наиболее распространенной функцией настройки является линия, но она не единственная, поскольку настройки также могут быть полиномиальными, потенциальными, экспоненциальными, логарифмическими и другими.

    -В любом случае коэффициент детерминации зависит от данных и типа корректировки и является показателем качества примененной корректировки.

    -Наконец, коэффициент детерминации указывает процент общей изменчивости между значением Y данных по отношению к значению соответствия для данного X.


    источники:

    http://lumpics.ru/coefficient-of-determination-in-excel/

    http://ru1.warbletoncouncil.org/coeficiente-de-determinacion-11466