Как найти коэффициент в уравнении с дробями

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Рациональные уравнения онлайн калькулятор

    Наш калькулятор поможет вам решить рациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.

    Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.

    Добро пожаловать на сайт Pocket Teacher

    Наш искусственный интеллект решает сложные математические задания за секунды

    Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

    начать

    Рациональные уравнения

    В рациональных уравнениях обе части уравнения представляют собой рациональные выражения вида: s(x) = 0 или расширено: s(x) = b(x), где s(x), b(x) – рациональные выражения.

    Рациональное выражение является алгебраическим выражением, которое состоит из рациональных чисел и переменной величины, соединенных с помощью сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем. Таким образом, это целые и дробные выражения без радикалов.

    Действия с рациональными числами обладают свойствами действий с целыми числами.

    К примеру, при умножении рациональных чисел есть дополнительное свойство – умножение взаимно обратных чисел. Для того чтобы умножить два рациональных числа, необходимо умножить модули этих чисел, а перед ответом поставить «плюс», если у множителей одинаковые знаки и «минус», если знаки разные.

    Умножение рационального числа на ноль. Когда в рациональном уравнении хоть один множитель – ноль, то и произведение будет равняться нолю.

    Умножение рациональных чисел с разными знаками. При умножении нескольких чисел с разными знаками, необходимо умножить модули каждого из этих чисел. Если количество множителей с отрицательными знаками – четное, то произведение всегда будет со знаком «плюс», если количество множителей с отрицательными знаками – нечетное, то и произведение будет со знаком «минус».

    Делить на ноль в рациональных уравнениях, как и в обычных нельзя.

    Чтобы решить рациональное уравнение, необходимо определить тип этого уравнения и применить некоторые математические хитрости, созданные для этого типа. Если Вы не помните этих хитростей, то можете воспользоваться калькулятором для решения рациональных уравнений, который быстро подберёт все корни данного уравнений.

    Решением рационального уравнения будут являться корень – конкретное число, при постановке которого в уравнение даст верное равенство. Корней рационального уравнения может быть много и важно в решении не упустить ни один корень.

    Бесплатный онлайн калькулятор

    Наш бесплатный решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

    Наш искусственный интеллект решает сложные математические задания за секунды.

    Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

    Разложение дроби на простейшие

    Для закрепления материала будут рассмотрены несколько примеров и рассмотрена теория по разложению дробей на простейшие. Подробно рассмотрим метод неопределенных коэффициентов и метод частных значений, изучим всевозможные комбинации.

    Простые дроби имеют название элементарных дробей.

    Типы дробей

    1. A x — a ;
    2. A ( x — a ) n ;
    3. M x + N x 2 + p x + q ;
    4. M x + N ( x 2 + p x + q ) n .

    A , M , N , a , p , q из которых являются числами, а дискриминант дробей 3 и 4 меньше нуля, то есть корней не имеет выражение.

    При упрощении выражения быстрее выполняются вычислительные функции. Представление дробно-рациональной дроби как суммы простейших дробей аналогично. Для этого применяют ряды Лорана для того, чтобы разложить в степенные ряды или для поиска интегралов.

    Например, если необходимо брать интеграл от дробно-рациональной функции вида ∫ 2 x 3 + 3 x 3 + x d x . После чего необходимо произвести разложение подынтегральной функции на простейшие дроби. Все это к формированию простых интегралов. Получаем, что

    ∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 2 x — 3 x + 2 x 2 + 1 d x = = ∫ 2 d x + ∫ 3 x d x — ∫ 3 x + 2 x 2 + 1 d x = = 2 x + 3 ln x — 3 2 ∫ d ( x 2 + 1 ) x 2 + 1 — 2 ∫ d x x 2 + 1 = = 2 x + 3 ln x — 3 2 ln x 2 + 1 — 2 a r c tan ( x ) + C

    Произвести разложение дроби вида — 2 x + 3 x 3 + x .

    Когда степень числителя многочлена меньше степени многочлена в знаменателе, имеет место разложение на простейшие дроби. Иначе применяется деление для выделения целой части, после чего производят разложение дробно-рациональной функции.

    Применим деление углом. Получаем, что

    Отсюда следует, что дробь примет вид

    2 x 3 + 3 x 3 + x = 2 + — 2 x + 3 x 3 + x

    Значит, такое разложение приведет к тому, что результат будет равен — 2 x + 3 x 3 + x .

    Алгоритм метода неопределенных коэффициентов

    Для того, чтобы правильно произвести разложение, необходимо придерживаться нескольких пунктов:

    • Произвести разложение на множители. можно применять вынесение за скобки, формулы сокращенного умножения, подбор корня. Имеющийся пример x 3 + x = x x 2 + 1 для упрощения выносят х за скобки.
    • Разложение дроби на простейшие дроби с неопределенными коэффициентами.

    Рассмотрим на нескольких примерах:

    Когда в знаменателе имеется выражение вида ( x — a ) ( x — b ) ( x — c ) ( x — d ) , количество множителей не имеет значения, дробь можно представить в виде дроби первого типа A x — a + B x — b + C x — c + D x — d , где a , b , c и d являются числами, A , B , C и D – неопределенными коэффициентами.

    Когда знаменатель имеет выражение ( x — a ) 2 ( x — b ) 4 ( x — c ) 3 , количество множителей также не имеет значения, причем саму дробь необходимо привести ко второму или первому типу вида:

    A 2 x — a 2 + A 1 x — a + B 4 x — b 4 + B 3 x — b 3 + B 2 x — b 2 + B 1 x — b + + C 3 x — c 3 + C 2 x — c 2 + C 1 x — c

    где имеющиеся a , b , c являются числами, а A 1 , A 2 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 — неопределенными коэффициентами. Какова степень многочлена, такое количество слагаемых имеем.

    Когда знаменатель имеет вид типа x 2 + p x + q x 2 + r x + s , тогда количество квадратичных функций значения не имеет, а дробь принимает вид третьего типа P x + Q x 2 + p x + q + R x + S x 2 + r x + s ,где имеющиеся p , q , r и s являются числами, а P , Q , R и S – определенными коэффициентами.

    Когда знаменатель имеет вид x 2 + p x + q 4 x 2 + r x + s 2 , количество множителей значения не имеет также , как и их степени, дробь представляется в виде третьего и четверного типов вида

    P 4 x + Q 4 ( x 2 + p x + q ) 4 + P 3 x + Q 3 ( x 2 + p x + q ) 3 + P 2 x + Q 2 ( x 2 + p x + q ) 2 + P 1 x + Q 1 x 2 + p x + q + + R 2 x + S 2 ( x 2 + r x + s ) 2 + R 1 x + S 1 x 2 + r x + s

    где имеющиеся p , q , r и s являются числами, а P 1 , P 2 , P 3 , P 4 , R 1 , R 2 , S 1 , S 2 — неопределенными коэффициентами.

    Когда имеется знаменатель вида ( x — a ) ( x — b ) 3 ( x 2 + p x + q ) ( x 2 + r x + s ) 2 , тогда дробь необходимо представить в виде четвертого типа

    A x — a + B 3 x — b 3 + В 2 x — b 2 + В 1 x — b + + P x + Q x 2 + p x + q + R 2 x + S 2 x 2 + r x + s 2 + R 1 x + S 1 x 2 + r x + s

    Рассмотрим на примере дроби. Когда дробь раскладывается в сумму третьим типом вида 2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 , где A , B и C являются неопределенными коэффициентами.

    Приведение полученной суммы простейших дробей при наличии неопределенного коэффициента к общему знаменателю, применяем метода группировки при одинаковых степенях х и получаем, что

    2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 = = A ( x 2 + 1 ) + ( B x + C ) x x ( x 2 + 1 ) = A x 2 + A + B x 2 + C x x ( x 2 + 1 ) = = x 2 ( A + B ) + x C + A x ( x 2 + 1 )

    Когда х отличен от 0 , тогда решение сводится к приравниванию двух многочленов. Получаем 2 x — 3 = x 2 ( A + B ) + x C + A . Многочлены считаются равными тогда, когда совпадают коэффициенты при одинаковых степенях.

    • Приравнивание коэффициентов с одинаковыми степенями х. Получим, что система линейных уравнений при наличии определенных коэффициентов:
      A + B = 0 C = 2 A = — 3
    • Решение полученной системы при помощи любого способа для нахождения неопределенных коэффициентов: A + B = 0 C = 2 A = — 3 ⇔ A = — 3 B = 3 C = 2
    • Производим запись ответа:
      2 x 3 + 3 x 3 + x = 2 — 2 x — 3 x 3 + x = 2 — 2 x — 3 x ( x 2 + 1 ) = = 2 — A x + B x + C x 2 + 1 = 2 — — 3 x + 3 x + 2 x 2 + 1 = 2 + 3 x — 3 x + 2 x 2 + 1

    Необходимо постоянно выполнять проверки. Это способствует тому, что приведение к общему знаменателю получит вид

    2 + 3 x — 3 x + 2 x 2 + 1 = 2 x ( x 2 + 1 ) — ( 3 x + 2 ) x x ( x 2 + 1 ) = 2 x 3 + 3 x 3 + x

    Методом неопределенных коэффициентов считают метод разложения дроби на другие простейшие.

    Использование метода частных значений способствует представлению линейных множителей таким образом:

    x — a x — b x — c x — d .

    Произвести разложение дроби 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x .

    По условию имеем, что степень многочлена числителя меньше степени многочлена знаменателя, тогда деление выполнять не нужно. Необходимо перейти к разложению на множители. для начала необходимо выполнить вынесение х за скобки. Получим, что

    x 3 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 )

    Квадратный трехчлен x 2 — 5 x + 6 имеет корни, которые находим не по дискриминанту, а по теореме Виета. Получим:

    x 1 + x 2 = 5 x 1 · x 2 = 6 ⇔ x 1 = 3 x 2 = 2

    Запись трехчлена может быть в виде x 2 — 5 x + 6 = ( x — 3 ) ( x — 2 ) .

    Тогда изменится знаменатель: x 2 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 ) = x ( x — 3 ) ( x — 2 )

    Имея такой знаменатель, дробь раскладываем на простейшие дроби с неопределенными коэффициентами. Выражение примет вид:

    2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2

    Полученный результат необходимо приводить к общему знаменателю. Тогда получаем:

    2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2 = = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 )

    После упрощения придем к неравенству вида

    2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 ) ⇒ ⇒ 2 x 2 — x — 7 = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 )

    Теперь переходим к нахождению неопределенных коэффициентов. Нужно подставлять полученные значения в равенство для того, чтобы знаменатель обратился в ноль, то есть значения х = 0 , х = 2 и х = 3 .

    Если х = 0 , получим:

    2 · 0 2 — 0 — 7 = A ( 0 — 3 ) ( 0 — 2 ) + B · 0 · ( 0 — 2 ) + C · 0 · ( 0 — 3 ) — 7 = 6 A ⇒ A = — 7 6

    Если x = 2 , тогда

    2 · 2 2 — 2 — 7 = A ( 2 — 3 ) ( 2 — 2 ) + B · 2 · ( 2 — 2 ) + C · 2 · ( 2 — 3 ) — 1 = — 2 C ⇒ C = 1 2

    Если x = 3 , тогда

    2 · 3 2 — 3 — 7 = A ( 3 — 3 ) ( 3 — 2 ) + B · 3 · ( 3 — 2 ) + C · 3 · ( 3 — 3 ) 8 = 3 B ⇒ B = 8 3

    Ответ: 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = A x + B x — 3 + C x — 2 = — 7 6 · 1 x + 8 3 · 1 x — 3 + 1 2 · 1 x — 2

    Метод коэффициентов и метод частных значений отличаются только способом нахождения неизвестных. Данные методы могут быть совмещены для быстрого упрощения выражения.

    Произвести разложение выражения x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 на простейшие дроби.

    По условию имеем, что степень числителя многочлена меньше знаменателя, значит зазложение примет вид

    x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3

    Производим приведение к общему знаменателю. Имеем, что

    x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3

    Приравняем числители и получим, что

    x 4 + 3 x 3 + 2 x + 11 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

    Из выше написанного понятно, что нули знаменателя – это х = 1 , х = — 1 и х = 3 . Тогда применим метод частных решений. Для этого подставим значения х. получим, что если х=1:

    — 5 = — 16 A ⇒ A = 5 16

    — 15 = 128 B ⇒ B = — 15 128

    157 = 8 C 3 ⇒ C 3 = 157 8

    Отсюда следует, что нужно найти значения C 1 и C 3 .

    Поэтому подставим полученный значения в числитель, тогда

    x 4 + 3 x 3 + 2 x — 11 = = 5 16 ( x + 1 ) ( x — 3 ) 3 — 15 128 ( x — 1 ) ( x — 3 ) 3 + 157 8 ( x — 1 ) ( x + 1 ) + + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

    Раскроем скобки для того, чтобы привести подобные слагаемые с одинаковыми степенями. Придем к выражению вида

    x 4 + 3 x 3 + 2 x — 11 = x 4 25 128 + C 1 + x 3 — 85 64 + C 2 — 6 C 1 + + x 2 673 32 — 3 C 2 + 8 C 1 + x 405 64 — C 2 + 6 C 1 + 3 C 2 — 9 C 1 — 3997 128

    Необходимо приравнять соответствующие коэффициенты с одинаковыми степенями, тогда сможем найти искомое значение C 1 и C 3 . Теперь необходимо решить систему:

    25 128 + C 1 = 1 — 85 64 + C 2 — 6 C 1 = 3 673 32 — 3 C 2 + 8 C 1 = 0 405 64 — C 2 + 6 C 1 = 2 3 C 2 — 9 C 1 — 3997 128 = 11

    Первое уравнение дает возможность найти C 1 = 103 128 , а второе C 2 = 3 + 85 64 + 6 C 1 = 3 + 85 64 + 6 · 103 128 = 293 32 .

    Итог решения – это искомое разложение дроби на простейшие вида:

    x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C 3 x — 3 3 + C 2 x — 3 2 + C 1 x — 3 = = 5 16 1 x — 1 — 15 128 1 x + 1 + 157 8 · 1 x — 3 3 + 293 32 1 x — 3 2 + 103 128 1 x — 3

    При непосредственном применении метода неопределенных коэффициентов необходимо было бы решать все пять линейных уравнений, объединенных в систему. Такой метод упрощает поиск значения переменных и дальнейшее решение в совокупности. Иногда применяется несколько методов. Это необходимо для быстрого упрощения всего выражения и поиска результата.


    источники:

    http://pocketteacher.ru/calculator-rationalnih-uravneniy-ru

    http://zaochnik.com/spravochnik/matematika/vyrazhenija/razlozhenie-drobi-na-prostejshie/