Как найти корень уравнения производной на графике

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. \begin f(x)=ax^3+bx^2+cx+d\\ f'(x)=3ax^2+bx+c \end Если в уравнении \(f'(x)=0\) дискриминант \(D=4b^2-12ac=4(b^2-3ac)\gt 0\), кубическая парабола имеет две точки экстремума: \(x_<1,2>=\frac<-2b\pm\sqrt><6a>\). Если при этом значения функции в точках экстремума \(f(x_1)\cdot f(x_2)\lt 0\), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но \(f(x_1)\cdot f(x_2)=0\), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) \(x^3+3x^2-4=0\)
\(b^2-3ac=9\gt 0 (c=0) \)
\(f(x)=x^3+3x^2-4 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-4,\ f(x_2)=0 \)
\(f(x_1)\cdot f(x_2)=0\Rightarrow\) два корня
2) \(x^3+3x^2-1=0\)
\(b^2-3ac=9\gt 0 \)
\(f(x)=x^3+3x^2-1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-1,\ f(x_2)=3 \)
\(f(x_1)\cdot f(x_2)\lt 0\Rightarrow\) три корня
3) \(x^3+3x^2+1=0\)
\(b^2-3ac=9\gt 0\)
\(f(x)=x^3+3x^2+1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=1,\ f(x_2)=5 \)
\(f(x_1)\cdot f(x_2)\gt 0\Rightarrow\) один корень
4) \(x^3+x^2+x+3=0\)
\(b^2-3ac=1-3\lt 0 \)
Один корень

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>\)
б) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>=k\)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью \(y=1\). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=\frac1x+\frac<1>+\frac<1> $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: \(x\ne\left\<0;1;3\right\>\)
Все три точки – точки разрыва 2-го рода. \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-\infty-1-\frac13=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+\infty-1-\frac13=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1-\infty-\frac12=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1+\infty-\frac12=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12-\infty=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12+\infty=+\infty \end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные \(x=0, x=1, x=3\) – точки разрыва 2-го рода
2. Горизонтальные: \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-0-0-0=-0\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+0+0+0=+0\\ \end Горизонтальная асимптота \(y=0\)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: \(k=0\), нет.
4) Первая производная $$ f'(x)=-\frac<1>-\frac<1><(x-1)^2>-\frac<1><(x-3)^2>\lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. \(x=0\) – асимптота
Точки пересечения с OX – две, \(0\lt x_1\lt 1,1\lt x_2\lt 3\)

7) График

Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь \(y=k\) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При \(k\lt 0\) — три корня
При \(k=0\) — два корня
При \(k\gt 0\) — три корня

Ответ: а) 3 корня; б) при \(k=0\) два корня, при \(k\ne 0\) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ \sqrt+\sqrt<10-2x>=a $$ имеет по крайней мере одно решение.

Исследуем функцию \(f(x)=\sqrt+\sqrt<10-2x>\)
ОДЗ: \( \begin x-1\geq 0\\ 10-2x\geq 0 \end \Rightarrow \begin x\geq 1\\ x\leq 5 \end \Rightarrow 1\leq x\leq 5 \)
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: \(f(1)=0+\sqrt<8>=2\sqrt<2>,\ f(5)=\sqrt<4>+0=2\)
Первая производная: \begin f'(x)=\frac<1><2\sqrt>+\frac<-2><2\sqrt<10-2x>>=\frac<1><2\sqrt>-\frac<1><\sqrt<10-2x>>\\ f'(x)=0\ \text<при>\ 2\sqrt=\sqrt<10-2x>\Rightarrow 4(x-1)=10-2x\Rightarrow 6x=14\Rightarrow x=\frac73\\ f\left(\frac73\right)=\sqrt<\frac73-1>+\sqrt<10-2\cdot \frac73>=\sqrt<\frac43>+\sqrt<\frac<16><3>>=\frac<6><\sqrt<3>>=2\sqrt <3>\end Промежутки монотонности:

\(x\)1(1; 7/3)7/3(7/3; 5)5
\(f'(x)\)+0
\(f(x)\)\(2\sqrt<2>\)\(\nearrow \)max
\(2\sqrt<3>\)
\(\searrow \)2

Можем строить график:

\(y=a\) — горизонтальная прямая.
Количество точек пересечения \(f(x)\) и \(y\) равно количеству решений.
Получаем:

$$ a\lt 2 $$нет решений
$$ 2\leq a\lt 2\sqrt <2>$$1 решение
$$ 2\sqrt<2>\leq a\lt 2\sqrt <3>$$2 решения
$$ a=2\sqrt <3>$$1 решение
$$ a\gt 2\sqrt <3>$$нет решений

По крайней мере одно решение будет в интервале \(2\leq a\leq 2\sqrt<3>\).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство \(\frac<2+\log_3 x>\gt \frac<6><2x-1>\)

Разобьем неравенство на совокупность двух систем.
Если \(x\gt 1\), то \(x-1\gt 0\), на него можно умножить слева и справа и не менять знак.
Если \(x\lt 1\), то \(x-1\lt 0\), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: \(x\gt 0\)

Получаем совокупность: \begin \left[ \begin \begin x\gt 1\\ 2+\log_3 x\gt\frac<6(x-1)> <2x-1>\end \\ \begin 0\lt x\lt 1\\ 2+\log_3 x\lt\frac<6(x-1)> <2x-1>\end \end \right. \\ 2+\log_3 x\gt \frac<6(x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<6(x-1)-2(2x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<2x-4><2x-1>\\ \left[ \begin \begin x\gt 1\\ \log_3 x\gt\frac<2x-4> <2x-1>\end \\ \begin 0\lt x\lt 1\\ \log_3 x\lt\frac<2x-4> <2x-1>\end \end \right. \end Исследуем функцию \(f(x)=\frac<2x-4><2x-1>=\frac<2x-1-3><2x-1>=1-\frac<3><2x-1>\)
Точка разрыва: \(x=\frac12\) – вертикальная асимптота
Односторонние пределы: \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-0>=+\infty\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+0>=-\infty \end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: \(y=1\) \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-\infty>=1+0\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+\infty>=1-0 \end На минус бесконечности кривая стремится к \(y=1\) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=\left(1-\frac<3><2x-1>\right)’=\frac<3><(2x-1)^2>\gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-\frac<6> <(2x-1)^3>$$ Одна критическая точка 2-го порядка \(x=\frac12\)

Производная функции. Геометрический смысл производной

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.

Производная — это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку A с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике.

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой. Она равна тангенсу угла наклона прямой к оси .

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастаетточка максимумаубываетточка минимумавозрастает
+00+

Ты нашел то, что искал? Поделись с друзьями!

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала — и после точки продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных.

«Решаем с помощью производной»

Разделы: Математика

Производная широко применяется при решении ряда задач элементарной математики. Из всего круга таких задач выделим те, при решении которых используется теорема Лагранжа и ее следствия. К ним относятся задачи на доказательство тождеств, неравенств, вывод формул тригонометрии, разложение алгебраических выражений на множители, решение уравнений, неравенств, систем уравнений, уравнений с параметрами. При этом можно указать общие методы решения и некоторые частные приемы.

Теорема Лагранжа. Пусть функция f непрерывна на отрезке [a;b] и дифференцируема во внутренних точках этого отрезка. Тогда существует внутренняя точка с этого отрезка, такая, что .

Следствие 1 (условие постоянства). Если функция f непрерывна на отрезке [a;b], а ее производная равна нулю внутри этого отрезка, то функция f постоянна на [a;b].

Следствие 2. Если функции и непрерывны на отрезке [a;b] и имеют одинаковые производные внутри этого отрезка, то они отличаются лишь постоянным слагаемым.

Условие монотонности функции также является следствием теоремы Лагранжа. В школьном учебнике оно устанавливается отдельно в виде теоремы.

Следствие 3 (условие монотонности). Если функция f непрерывна на промежутке I и ее производная положительна (соответственно отрицательна) во внутренних точках этого промежутка, то функция f возрастает (соответственно убывает) на I.

Теорему Лагранжа можно применять:

— при доказательстве неравенств, в частности – числовых неравенств;

— при исследовании вопроса о корнях многочлена или уравнения;

— при решении уравнений.

В процессе решения таких задач вводится в рассмотрение функция f(x) на отрезке [a;b], удовлетворяющая условиям теоремы Лагранжа, для нее записывается формула Лагранжа , c (a;b) и оценивается f’(c), а, следовательно, и выражение , что позволяет доказать рассматриваемое неравенство или решить вопрос о корнях многочлена, уравнения.

Пример 1. Доказать, что .

Решение. Функция f(x)=arccosx на отрезке [0,6;0,8] непрерывна и дифференцируема на интервале (0,6;0,8), . Следовательно, для функции f(x) на данном отрезке выполняются условия теоремы Лагранжа и , где 0,6 , т.е. . Оценим число . Так как 0,6 2 . Тогда и окончательно .

Пример 2. Доказать, что e x >=ex.

Решение. Неравенство справедливо при х=1. Рассмотрим функцию f(x)=e x -ex. Тогда для любого числа b (b>1) для данной функции выполняются условия теоремы Лагранжа на отрезке [1;b], а для b , т.е. . Так как c>1 при b>1, то e c >e и, следовательно, e c -e>0. Тогда , а значит e b -eb>0, т.е. e b >eb для любого b>1. Таким образом доказано, что e x >=ex при x>=1.

Если b , т.е. с c c -e , следует, что e b -eb>0, т.е. e b >eb.

Итак, доказано, что неравенство e x >=ex верно при любом действительном х. В частности, при x=c+1 получим e c+1 >=e(c+1), т.е. e c >=c+1, где с – любое действительное число.

Пример 3. Доказать, что уравнение не имеет действительных положительных корней.

Решение. Пусть b – любое положительное число. Рассмотрим функцию f(x)= , непрерывную на отрезке [a;b] и имеющую производную на интервале (0;b). По теореме Лагранжа имеем , 0 . А так как при любом с>0 e c >c+1 (доказано в примере 2), то e c -c>1 и, следовательно, . Отсюда получим , а значит для любого b>0. Таким образом, при x>0, т.е. , следовательно, равенство не выполняется ни при каком x>0. А, значит, уравнение не имеет действительных положительных корней.

Пример 4. Доказать, что на промежутке (0, 2) имеется не более двух различных действительных корней уравнения .

Решение. Предположим, что уравнение имеет не менее трех различных действительных корней х1, х2, х3, принадлежащих промежутку (0,2), и пусть x1 , т.е. f(x1)=f(x2)=f(x3)=0. На каждом из отрезков [x1;x2], [x2;x3] для функции f(x) выполняются условия теоремы Лагранжа, следовательно, существуют числа c1 и с2 из интервалов (х12), (х23) соответственно, такие, что и . А так как f(x1)=f(x2)=f(x3)=0, то f’(c1)=0 и f’(c2)=0, причем с1с2.

Найдем производную f’(x):

. Так как для любых х, то уравнение f’(x)=0 имеет единственный корень x=, принадлежащий промежутку (0, 2). Пришли к противоречию, так как с1 и с21с2) являются корнями уравнения f’(x)=0, тем самым доказано, что уравнение имеет на промежутке (0,2) не более двух различных действительных корней.

Пример 5. Решить уравнение x 9 -9x 5 +63x-55=0.

Решение. Легко заметить, что число х1=1 является корнем данного уравнения. Предположим, что существует еще хотя бы один действительный корень х2, отличный от х1. Числа х1 и х2 являются нулями функции f(x)=x 9 -9x 5 +63x-55 и, следовательно, f(x1)=f(x2)=0. Применим терему Лагранжа к функции f(x) на отрезке [x1;x2], если x1 x2. Следовательно, найдется такая внутренняя точка с этого отрезка, что будет выполняться . Учитывая, что f(x1)=f(x2)=0, получим f’(с)=0, т.е. число с – корень уравнения f’(x)=0. Но производная f’(x)=9x 8 -45x 4 +63, т.е. f’(x)=9(x 4 -2,5) 2 +6,75 положительна для любых х, а значит уравнение f’(x)=0 не имеет корней. Полученное противоречие доказывает, что найденный корень х1=1 является единственным корнем уравнения x 9 -9x 5 +63x-55=0.

Определить число критических точек функции y=(x 2 -1)(x 2 -8х)(x-9).

Решение. Так как степень многочлена f(x)= (x 2 -1)(x 2 -8х)(x-9) равна 5, то его производная f’(x) является многочленом четвертой степени и имеет не более четырех действительных корней. Применим теорему Лагранжа к функции f(x)=(x+1)(x-1)х(x-8)(x-9) на отрезках [-1;0], [0;1], [1;8], [8;9] и при этом учтем, что f(-1)=f(0)=f(1)=f(8)=f(9)=0. На каждом таком отрезке найдутся внутренние точки х1, х2, х3, х4 соответственно, такие, что , , , , т.е. f’(x1)=0, f’(x2)=0, f’(x3)=0, f’(x4)=0. А учитывая, что x1, х2, х3, х4 – различные корни многочлена f’(x) четвертой степени, делаем вывод, что других корней, отличных от полученных, нет и, следовательно, функция y=(x 2 -1)(x 2 -8х)(x-9) имеет четыре критические точки.

Условие монотонности функции можно применять:

— при решении неравенств;

— при доказательстве неравенств с переменной;

— при доказательстве числовых неравенств;

— при исследовании вопроса о количестве корней уравнения;

— в некоторых случаях при решении уравнений, уравнений с параметрами, систем уравнений.

Решение задач с использованием условия монотонности основано на связи между возрастанием или убыванием функции и знаком ее производной на некотором промежутке. При этом, сравнивая различные значения аргумента из этого промежутка рассматриваемой монотонной функции, делается вывод о соответствующих значениях данной функции.

Пример 7. Доказать, что 3xcosx .

Решение. Докажем, что, если 0 , то sinx+sin2x-3xcosx>0, т.е. cosx(tgx+2sinx-3x)>0. Рассмотрим непрерывную на промежутке функцию f(x)=tgx-3x+2sinx. Ее производная при принимает положительные значения, следовательно, функция f(x) возрастает на промежутке и на нем f(x)>f(0).

Учитывая, что f(0)=0, будем иметь tgx-3x+2sinx>0. А так как на промежутке cosx>0, то и cosx(tgx+2sinx-3x)>0. Таким образом доказано, что sinx+sin2x-3xcosx>0, то есть, что 3xcosx .

Пример 8. Доказать, что

1) и , если 0 и , если e . Так как ее производная равна нулю при х=е, а при 0 0 и f’(x) e, то на промежутке (0;e] функция f(x) возрастает, а на промежутке [e;+) — убывает. Тогда для любых значений х1 и х2 таких, что 0 . Запишем его в виде , . Учитывая, что функция ln t возрастающая, получим . А если обе части неравенства умножить на произведение x1x2>0, то получим x2lnx1 , откуда и будем иметь .

Если же e f(x2), то есть , откуда и получим и .

Доказанными в примере 8 неравенствами можно воспользоваться при сравнении чисел и при доказательстве числовых неравенств.

Пример 9. Сравнить (сtg48°) tg48° и (сtg50°) tg50° .

Решение. Заметим, что сtg48°=сtg , tg48°=tg , ctg50°=ctg , tg50°=tg , а также, что . Взяв , и учитывая, что , если 0 , т.е. (сtg48°) tg48° > (сtg50°) tg50° .

Пример 10. Доказать, что 2006 2007 >2007 2006 .

Решение. Воспользуемся неравенством x1 x2 >x2 x1 , если e 2007 >2007 2006 .

Определить число действительных корней уравнения 2х 3 -24х-19=0.

Решение. Функция f(x)= 2х 3 -24х-19 непрерывна на всей числовой прямой и имеет производную f’(x)=6x 2 -24=6(x-2)(x+2).

При x 2 f’(x)>0, а при –2 0, f(2)=-51 0. Так как функция f(x) на концах отрезков [-3;-2], [-2;2], [2;5] принимает значения разных знаков, то на каждом из них имеется только один корень уравнения. Таким образом, уравнение 2х 3 -24х-19=0 имеет три действительных корня, которые находятся на промежутках (-3;-2), (-2;2), (2;5).

Остальные следствия теоремы Лагранжа можно применять:

— при доказательстве тождеств, в частности при выводе формул элементарной математики;

— при упрощении выражений;

— при разложении алгебраических выражений на множители.

При решении ряда таких задач на некотором промежутке рассматривается либо одна функция f(x), такая, что ее производная f’(x)=0 и, следовательно, функция постоянна, т.е. имеет вид f(x)=c, либо две функции f(x) и g(x), такие, что f’(x)=g’(x), и делается вывод, что f(x)=g(x)+c (c — постоянная). Эту постоянную находят, положив х равным некоторому значению х1.

Пример 12. Вывести формулу .

Решение. Функция f(x)= непрерывна на всей числовой прямой. Найдем производную этой функции f’(x)=2sinxcosx-sin2x=sin2x-sin2x. f’(x)=0 для любого действительного значения х, следовательно, на основании условия постоянства функции можно сделать вывод, что функция f(x) постоянна, т.е. f(x)=c. Для определения постоянной c положим х=0 и получим f(0)=c, т.е. sin 2 0-0,5+0,5cos0=c. Таким образом, с=0 и значит f(x)=0, откуда и получим =0, или .

Пример 13. Доказать, что arctgx=arcsin при x , тогда они непрерывны на любом отрезке [b;0]. Найдем производные этих функций.

, . Так как при x и тогда f’(x)=g’(x) внутри отрезка [b;0]. На основании следствия 2 имеем f(x)=g(x)+c, где с – постоянная. Для определения с положим, например, х=-1, что дает arctg(-1)=arcsin , то есть Итак, получим arctgx=arcsin при x

Решение. Заметим, что , для любого действительного х и функции , непрерывны на всей числовой прямой. Имеем ,

1) Рассмотрим функцию F(x)=f(x)+g(x), x (-;-1) (0;1).

F(x)= , а F’(x)=f’(x)+g’(x)= . Если x (-;-1), то |х 2 -1|=х 2 -1, |х|=-х и F’(x)=0. Если x (0;1), то |х 2 -1|=-(х 2 -1), |х|=х и F’(x)=0. На основании условия постоянства функции F(x)=c, то есть . На каждом из рассматриваемых промежутков определим с, положив, например, х= и x= .

, cледовательно, с=.

, следовательно, с=0. Имеем: при x (-;-1), при x (0;1).

2) Рассмотрим функцию G(x)=f(x)-g(x), x (-1;0) (1; +).

Если x (-1;0), то |х 2 -1|=-(х 2 -1), |x|=-x и G’(x)=0.

Если x (1; +), то |х 2 -1|=х 2 -1, |x|=x и G’(x)=0. Тогда на указанных промежутках функция G(x) постоянна, т.е. . Положим x= и x= , получим , следовательно, с=; , тогда с=0.

Имеем: при x (-1;0), при x (1;+ ).

3) Вычислим значения f(x) и g(x) при х=± 1 и х=0.

f(-1)=arccos(-1)=, g(-1)=arcsin0=0; следовательно, при х=-1 f(x)=+g(x), то есть . , , следовательно, при х=0 f(x)=-g(x), то есть . f(1)=arccos1=0, g(1)=arcsin0=0, следовательно, при х= 1 f(x)=g(x), то есть .

Таким образом, данное тождество доказано для всех действительных х.

Пример 15. Разложить на множители выражение

y 2 (x-z)+x 2 (z-y)+z 2 (y-x).

Решение. На данное выражение будем смотреть как на функцию от переменной х: f(x)=y 2 (x-z)+x 2 (z-y)+z 2 (y-x).

f’(x)=y 2 +2x(z-y)-z 2 =y 2 -z 2 -2x(y-z)=(y-z)(y+z)-2x(y-z)=(y-z)(y+z-2x).

Будем считать, что (y-z)(y+z-2x) есть производная некоторой другой функции g(x), при этом множитель (y-z) будем рассматривать как постоянную, вынесенную при дифференцировании за знак производной, т.е.

g’(x)=(y-z)((y+z)-2x). В качестве функции g(x) можно взять g(x)=(y-z)((y-z)x-x 2 ).

Так как функции f(x) и g(x) непрерывны и дифференцируемы на всей числовой прямой и f’(x)=g’(x), то по следствию 2 f(x)=g(x)+c, где с не зависит от х, но, возможно, зависит от y и z. Имеем y 2 (x-z)+x 2 (z-y)+z 2 (y-x)=(y-z)((y+z)x-x 2 )+c. Найдем с, полагая в этом равенстве, например, х=0. Имеем yz 2 -zy 2 =c. Тогда f(x)=g(x)+yz 2 -zy 2 , то есть

f(x)=(y-z)((y+z)x-x 2 )+yz 2 -zy 2 =(y-z)(xy+xz-x 2 )-yz(y-z)=(y-z)(xy-x 2 +xz-yz)=(y-z)(x(y-x)-z(y-x))=(y-z)(y-x)(x-z).

Итак, y 2 (x-z)+x 2 (z-y)+z 2 (y-x)=(y-z)(y-x)(x-z).


источники:

http://ege-study.ru/ru/ege/materialy/matematika/proizvodnaya-funkcii-geometricheskij-smysl-proizvodnoj/

http://urok.1sept.ru/articles/417890