Как найти мнимые корни квадратного уравнения

Как найти мнимые корни квадратного уравнения

Алгебраическое уравнение 2-й степени иначе называется квадратным. Наиболее общий вид квадратного уравнения с одним неизвестным есть

где a, b, c — данные числа или буквенные выражения, содержащие известные величины (причем коэффициент а не может быть равен нулю, иначе уравнение будет не квадратным, а 1-й степени).. Разделив обе его части на a, мы получим уравнение вида

(p = b/a; q = c/a).
Квадратное уравнение такого вида называется приведенным; уравнение ах 2 + bx + c = 0 (где а ≠ 0), называется неприведенным. Если одна из величин b, с или обе вместе равны нулю, то квадратное уравнение называется неполным; если и b и с не равны нулю, квадратное уравнение называется полным.

Примеры
3x 2 + 8x -5 = 0 – полное неприведенное квадратное уравнение;
3x 2 – 5 = 0 – неполное неприведенное квадратное уравнение;
x 2 – ax = 0 – неполное приведенное квадратное уравнение;
x 2 – 12x +7 = 0 – полное приведенное квадратное уравнение.

Неполное квадратное уравнение вида

x 2 = m (m – известная величина)

является самым простым типом квадратного уравнения и вместе с тем очерь важным, так как к нему приводится решение всякого квадратного уравнения. Решение этого уравнения имеет вид

Возможны три случая:

1) Если m = 0, то и x = 0.

2) Если m – положительное число, то его квадратный корень может иметь два значения: одно положительное, другое отрицательное. Абсолютные величины этих значений одинаковы. Например, уравнение x 2 = 9 удовлетворяется значением х = + 3 и х = — 3. Другими словами, x имеет два значения: +3 и — 3. Часто это выражают тем, что перед радикалом ставят два знака – плюс и минус.

При таком написании подразумевается, что выражение обозначает общую абсолютную величину-двух значений корня; в нашем примере — число 3. Величина может быть иррациональным чиcлом. Заметим, что и само m может быть иррациональным числом. Например, пусть требуется решить уравнение

(геометрически это означает найти длину стороны квадрата равного по площади кругу с радиусом 1). Его корень x = √π.

3) Если m — отрицательное число, то уравнение х 2 = m (например, х 2 = — 9) не может иметь никакого положительного и никакого отрицательного корня: ведь и положительное и отрицательное число по возведении в квадрат дает положительное число. Таким образом, можно сказать, что уравнение х 2 = — 9 не имеет решений, т.е. число не существует.

Но с таким же основанием до введения отрицательных чисел можно было говорить, что и уравнение 2x + 6 = 4 не имеет решений. Однако после введения отрицательных чисел это уравнение стало разрешимым. Точно так же уравнение х 2 = — 9, не имеющее решений среди положительных и отрицательных чисел, становится разрешимым после введения новых величин — квадратных корней из отрицательных чисел. Эти величины были впервые введены итальянским математиком Кардано в середине 16 века в связи с решением кубического уравнения. Кардано назвал эти числа «софистическими» (т. е. «мудреными»). Декарт в 30-х годах 17 века ввел наименование «мнимые числа», которое, к сожалению, удерживается до сих пор. В противоположность мнимым числам прежде известные числа (положительные и отрицательные, в том числе иррациональные) стали называть действительными или вещественными. Сумма действительного и мнимого числа называется комплексным числом*.Часто и комплексные числа называют мнимыми.

Введя в рассмотрение мнимые числа, можно сказать, что неполное квадратное уравнение x 2 = m всегда имеет два корня. Если m > 0, эти корни действительны, они имеют одинаковую абсолютную величину и различны по знаку. Если m = 0, оба они равны нулю; если m *Этот термин введен Гауссом в 1831 г. Слово «комплексный» означает в переводе «совокупный».

Квадратное уравнение с комплексными корнями

Вы будете перенаправлены на Автор24

Рассмотрим решение уравнений с комплексными корнями и коэффициентами.

Двучленным называется уравнение вида $x^ =A$.

Рассмотрим три случая:

Решить уравнение: $x^ <3>=8$.

Так как $A>0$, то $x_ =\sqrt[<3>] <8>\cdot \left(\cos \frac<2k\pi > <3>+i\cdot \sin \frac<2k\pi > <3>\right),\, \, \, k=0. 2$.

При $k=0$ получаем $x_ <0>=\sqrt[<3>] <8>\cdot \left(\cos 0+i\cdot \sin 0\right)=\sqrt[<3>] <8>=2$.

При $k=1$ получаем

\[x_ <1>=\sqrt[<3>] <8>\cdot \left(\cos \frac<2\pi > <3>+i\cdot \sin \frac<2\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=-1+\sqrt <3>\cdot i.\]

При $k=2$ получаем

\[x_ <2>=\sqrt[<3>] <8>\cdot \left(\cos \frac<4\pi > <3>+i\cdot \sin \frac<4\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=-1-\sqrt <3>\cdot i.\]

Решить уравнение: $x^ <3>=1+i$.

Готовые работы на аналогичную тему

Так как $A$ — комплексное число, то

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(\cos \varphi +i\cdot \sin \varphi )$.

По условию $a=1,b=1$.

Вычислим модуль исходного комплексного числа:

Вычислим аргумент исходного комплексного числа:

\[\varphi =\arg z=arctg\frac<1> <1>=arctg1=\frac<\pi > <4>\]

Подставим полученные значения и получим:

Уравнение перепишем в виде:

При $k=0$ получаем $x_ <0>=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi /4> <3>+i\cdot \sin \frac<\pi /4> <3>\right)=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)=\sqrt[<6>] <2>\cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)$.

При $k=1$ получаем

При $k=2$ получаем

Квадратным называется уравнение вида $ax^ <2>+bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.

Решение квадратного уравнения находится с помощью дискриминанта $D=b^ <2>-4ac$, при этом

В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.

Решить уравнение $x^ <2>+2x+5=0$ и изобразить корни на плоскости.

\[D=2^ <2>-4\cdot 1\cdot 5=4-20=-16.\]

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.

В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.

Комплексное число вида $\overline=a-bi$ называется числом комплексно-сопряженным для $z=a+bi$.

Известно, что если $x_ <1,2>$ являются корнями квадратного уравнения $ax^ <2>+bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ <1>)(x-x_ <2>)=0$. В общем случае $x_ <1,2>$ являются комплексными корнями.

Зная корни уравнения $x_ <1,2>=1\pm 2i$, записать исходное уравнение.

Запишем уравнение следующим образом:

\[x^ <2>-(1-2i)\cdot x-x\cdot (1+2i)+(1-2i)\cdot (1+2i)=0\] \[x^ <2>-x+2i\cdot x-x-2i\cdot x+1-4i^ <2>=0\] \[x^ <2>-2x+1+4=0\] \[x^ <2>-2x+5=0\]

Следовательно, $x^ <2>-2x+5=0$ — искомое уравнение.

Рассмотрим квадратное уравнение с комплексными коэффициентами.

Решить уравнение: $z^ <2>+(1-2i)\cdot z-(1+i)=0$ и изобразить корни на плоскости.

Так как $D>0$, уравнение имеет два корня:

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.

В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 13 11 2021

Сергей Евгеньевич Грамотинский

Эксперт по предмету «Математика»

Работаем по будням с 10:00 до 20:00 по Мск

. и многие другие.
Успешной учебы! Будем рады вам помочь!

Мнимые корни квадратного уравнения

Основные формулы

Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.

Далее считаем, что – действительные числа.
Рассмотрим дискриминант квадратного уравнения:
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь – мнимая единица, ;
и – действительная и мнимая части корней:
; .
Тогда

Графическая интерпретация

Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках (см. рисунок ⇓).
При , график касается оси абсцисс в одной точке (см. рисунок ⇓).
При , график не пересекает ось абсцисс (см. рисунок ⇓).

Полезные формулы, связанные с квадратным уравнением

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

выполняется при
и .
То есть и являются корнями квадратного уравнения
.

Примеры определения корней квадратного уравнения

Пример 1

Найти корни квадратного уравнения:
(1.1) .

Запишем квадратное уравнение в общем виде:
.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.

Отсюда получаем разложение квадратного трехчлена на множители:

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).

Пример 2

Найти корни квадратного уравнения:
(2.1) .

Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.

Тогда разложение трехчлена на множители имеет вид:
.

График функции y = x 2 – 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

Пример 3

Найти корни квадратного уравнения:
(3.1) .

Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.

Можно найти комплексные корни:
;
;
.

График функции не пересекает ось абсцисс. Действительных корней нет.

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Действительных корней нет. Корни комплексные:
;
;
.

Автор: Олег Одинцов . Опубликовано: 19-04-2016

Алгебраическое уравнение 2-й степени иначе называется квадратным. Наиболее общий вид квадратного уравнения с одним неизвестным есть

где a, b, c – данные числа или буквенные выражения, содержащие известные величины (причем коэффициент а не может быть равен нулю, иначе уравнение будет не квадратным, а 1-й степени).. Разделив обе его части на a, мы получим уравнение вида

(p = b/a; q = c/a).
Квадратное уравнение такого вида называется приведенным; уравнение ах 2 + bx + c = 0 (где а ≠ 0), называется неприведенным. Если одна из величин b, с или обе вместе равны нулю, то квадратное уравнение называется неполным; если и b и с не равны нулю, квадратное уравнение называется полным.

Примеры
3x 2 + 8x -5 = 0 – полное неприведенное квадратное уравнение;
3x 2 – 5 = 0 – неполное неприведенное квадратное уравнение;
x 2 – ax = 0 – неполное приведенное квадратное уравнение;
x 2 – 12x +7 = 0 – полное приведенное квадратное уравнение.

Неполное квадратное уравнение вида

x 2 = m (m – известная величина)

является самым простым типом квадратного уравнения и вместе с тем очерь важным, так как к нему приводится решение всякого квадратного уравнения. Решение этого уравнения имеет вид

Возможны три случая:

1) Если m = 0, то и x = 0.

2) Если m – положительное число, то его квадратный корень может иметь два значения: одно положительное, другое отрицательное. Абсолютные величины этих значений одинаковы. Например, уравнение x 2 = 9 удовлетворяется значением х = + 3 и х = – 3. Другими словами, x имеет два значения: +3 и – 3. Часто это выражают тем, что перед радикалом ставят два знака – плюс и минус.

При таком написании подразумевается, что выражение обозначает общую абсолютную величину-двух значений корня; в нашем примере – число 3. Величина может быть иррациональным чиcлом. Заметим, что и само m может быть иррациональным числом. Например, пусть требуется решить уравнение

(геометрически это означает найти длину стороны квадрата равного по площади кругу с радиусом 1). Его корень x = √π.

3) Если m – отрицательное число, то уравнение х 2 = m (например, х 2 = – 9) не может иметь никакого положительного и никакого отрицательного корня: ведь и положительное и отрицательное число по возведении в квадрат дает положительное число. Таким образом, можно сказать, что уравнение х 2 = – 9 не имеет решений, т.е. число не существует.

Но с таким же основанием до введения отрицательных чисел можно было говорить, что и уравнение 2x + 6 = 4 не имеет решений. Однако после введения отрицательных чисел это уравнение стало разрешимым. Точно так же уравнение х 2 = – 9, не имеющее решений среди положительных и отрицательных чисел, становится разрешимым после введения новых величин – квадратных корней из отрицательных чисел. Эти величины были впервые введены итальянским математиком Кардано в середине 16 века в связи с решением кубического уравнения. Кардано назвал эти числа «софистическими» (т. е. «мудреными»). Декарт в 30-х годах 17 века ввел наименование «мнимые числа», которое, к сожалению, удерживается до сих пор. В противоположность мнимым числам прежде известные числа (положительные и отрицательные, в том числе иррациональные) стали называть действительными или вещественными. Сумма действительного и мнимого числа называется комплексным числом*.Часто и комплексные числа называют мнимыми.

Введя в рассмотрение мнимые числа, можно сказать, что неполное квадратное уравнение x 2 = m всегда имеет два корня. Если m > 0, эти корни действительны, они имеют одинаковую абсолютную величину и различны по знаку. Если m = 0, оба они равны нулю; если m *Этот термин введен Гауссом в 1831 г. Слово «комплексный» означает в переводе «совокупный».

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения x2 = – 1.

Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x2 = – 1 имеет два решения: x1 = i, x2 = – i.

Это нетрудно установить проверкой: , .

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:

где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член, причем . Решим это уравнение, выполнив над ним ряд несложных преобразований.

Разделим все члены уравнения на и перенесем свободный член в правую часть уравнения:

К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:

Извлечем корень квадратный из обеих частей уравнения:

Найдем значения неизвестной:

Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения.

Если , то есть действительное число и квадратное уравнение имеет действительные корни.

Если же то мнимое число, квадратное уравнение имеет мнимые корни.

Результаты исследования представлены ниже в таблице:

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.

1. Решите уравнение .

Решение. Найдем дискриминант .

Уравнение имеет два действительных корня:

2. Решите уравнение .

Решение. , уравнение имеет два равных действительных корня:


источники:

http://spravochnick.ru/matematika/kompleksnye_chisla_i_mnogochleny/kvadratnoe_uravnenie_s_kompleksnymi_kornyami/

http://dudom.ru/kompjutery/mnimye-korni-kvadratnogo-uravnenija/