Как найти неявное уравнение поверхности

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Поверхности. Касательная плоскость и нормаль

Краткие теоретические сведения

Способы задания поверхностей

Рассматриваем вектор–функцию двух скалярных аргументов: $$\vec=\vec(u,v).$$ Годографом такой функции является поверхность.

Запишем четыре способа задания поверхности: 1. Векторное уравнение: $$\vec=\vec(u,v).$$ 2. Параметрическое уравнение: $$x=x(u,v),\,\, y=y(u,v),\,\, z=z(u,v).$$ 3. Неявное уравнение: $$\varPhi(x,y,z)=0.$$ 4. Явное уравнение: $$z=z(x,y).$$

Поверхность называется регулярной ($k$ раз дифференцируемой), если у каждой точки этой поверхности есть окрестность, допускающая регулярную параметризацию (то есть функции $x(u,v), y(u,v),z=z(u,v)$ $k$ раз непрерывно дифференцируемы). При $k=1$ поверхность называется гладкой.

Регулярная поверхность в окрестности каждой своей точки допускает бесчисленное множество параметризаций.

Кривая, лежащая на поверхности $\vec=\vec(u,v)$, задается уравнениями $$ u=u(t),\,\, v=v(t).$$ Линии $u=\mbox$, $v=\mbox$ являются координатными линиями данной параметризации поверхности.

Решение задач

Задача 1 (Феденко №544)

Дана поверхность \begin x=u+v, \,\, y=u-v,\,\, z=uv. \end Проверить, принадлежат ли ей точки $A(4,2,3)$ и $B(1,4,-2)$.

Ответ. Точка $A$ принадлежит, так как ее координаты удовлетворяют системе уравнений, задающих поверхность. Точка $B$ не принадлежит поверхности.

Задача 2 (Феденко № 546)

Найдите неявное уравнение поверхности, заданной параметрическими уравнениями: \begin \begin x & = x_0 + a\,\mbox\,u\,\mbox\,v, \\ y & = y_0 + b\,\mbox\,u\,\mbox\,v, \\ z & = z_0 + c\,\mbox\,u. \end \end

Ответ. Эллипсоид с полуосями $a$, $b$, $c$ и центром в точке $(x_0, y_0, z_0)$: \begin \frac<(x-x_0)^2>+\frac<(y-y_0)^2>+\frac<(z-z_0)^2>=1. \end

Задача 3 (Феденко №528)

В плоскости $xOz$ задана кривая $x=f(u)$, $z=g(u)$, не пересекающая ось $Oz$. Найдите параметризацию поверхности, полученной при вращении этой кривой вокруг оси $Oz$.

Решение задачи 3

Произвольная точка $M$, принадлежащая кривой и имеющая координаты $x_0=f(u_0)$, $y_0=0$, $z_0=g(u_0)$, движется по окружности с центром на оси $Oz$ и радиусом $R=f(u_0)$ в плоскости, параллельной плоскости $xOy$: $z=g(u_0)$. Поэтому изменение ее координат можно записать следующими уравнениями: \begin \left\< \begin x_0 & = & f(u_0)\,\mbox\,v, \\ y_0 & = & f(u_0)\,\mbox\,v, \\ z_0 & = & g(u_0). \\ \end \right. \end

Поскольку точка $M$ произвольная, уравнение искомой поверхности: \begin \left\< \begin x & = & f(u)\,\mbox\,v, \\ y & = & f(u)\,\mbox\,v, \\ z & = & g(u). \\ \end \right. \end

Касательная плоскость. Нормаль

Краткие теоретические сведения

Пусть $\vec=\vec(u,v)\in C^1$ — поверхность, проходящая через точку $P(u_0, v_0)$. Пусть $u=u(t)$, $v=v(t)$ — уравнения гладкой кривой, проходящей через точку $P(u_0, v_0)$ и лежащей на заданной поверхности.

Пусть точка $P$ не является особой, то есть ранг матрицы \begin \left( \begin x_u & y_u & z_u \\ x_v & y_v & z_v \\ \end \right) \end в точке $P$ равен $2$ (для особой точки ранг меньше $2$). Если поверхность задана неявно $\varPhi(x,y,z)=0$, то в не особой точке $P$ выполняется условие: $\varPhi_x^2+\varPhi_y^2+\varPhi_z^2\neq0.$

Касательная к кривой $u=u(t)$, $v=v(t)$ на поверхности $\vec=\vec(u,v)$ определяется вектором: \begin \displaystyle\frac>

=\vec_u\displaystyle\frac
+\vec_v\displaystyle\frac
, \end где $\vec_u=\displaystyle\frac>$, $\vec_v=\displaystyle\frac>$. Для разных кривых, проходящих через точку $P(u_0, v_0)$, значения $\displaystyle\frac
$, $\displaystyle\frac
$ будут разными, а $\vec_u$, $\vec_v$ теми же. Следовательно, все векторы $\displaystyle\frac>
$ лежат в одной плоскости, определяемой векторами $\vec_u$, $\vec_v$. Эта плоскость называется касательной плоскостью к поверхности в точке $P$. Запишем уравнение касательной плоскости.

Обозначения:
— $\vec=\$ — радиус-вектор произвольной точки касательной плоскости.
— $\vec=\$ — радиус вектор точки $P(u_0, v_0)$.
— Частные производные $x_u$, $y_u$, $z_u$, $x_v$, $y_v$, $z_v$ вычисляются в точке $P(u_0, v_0)$.

Уравнение касательной плоскости:

1. Если поверхность задана векторно, то уравнение касательной плоскости можно записать через смешанное произведение трех линейно зависимых векторов: $$ \left(\vec-\vec, \, \vec_u, \, \vec_v \right)=0. $$ 2. Если поверхность задана параметрически, запишем определитель: \begin \left| \begin X-x & Y-y & Z-z \\ x_u & y_u & z_u\\ x_v & y_v & z_v\\ \end \right|=0 \end 3. Если поверхность задана неявным уравнением: \begin \varPhi_x(X-x)+\varPhi_y(Y-y)+\varPhi_z(Z-z)=0. \end 4. В случая явного задания поверхности, уравнение касательной плоскости примет вид: \begin (Z-z)=z_x(X-x)+z_y(Y-y). \end

Нормалью поверхности в точке $P$ называется прямая, проходящая через $P$ перпендикулярно касательной плоскости в этой точке.

Уравнение нормали:

1.$$ \vec=\vec + \lambda\vec, \,\, \vec=\vec_u\times\vec_v. $$ 2. \begin \displaystyle\frac< \left| \begin y_u & z_u\\ y_v & z_v\\ \end \right|>= \displaystyle\frac< \left| \begin z_u & x_u\\ z_v & x_v\\ \end \right|>= \displaystyle\frac< \left| \begin x_u & y_u\\ x_v & y_v\\ \end \right|>. \end 3. \begin \displaystyle\frac<\varPhi_x>=\displaystyle\frac<\varPhi_y>=\displaystyle\frac<\varPhi_z>. \end 4. \begin \displaystyle\frac=\displaystyle\frac=\displaystyle\frac<-1>. \end

Решение задач

Задача 1 (Феденко №574)

Дана поверхность \begin x=u\,\mbox\,v,\,\, y=u\,\mbox\,v,\,\, z=u. \end Написать:
а) уравнение касательной плоскости к поверхности;
б] уравнение нормали к поверхности;
в) касательной к линии $u=2$
в точке $M\left(u=2, v=\displaystyle\frac<\pi><4>\right)$ поверхности.

Задача 2

Через точки $A(0,1,0)$ и $B(1,0,0)$ провести плоскость, касательную к поверхности $\vec=\$.

Ответ. $z=0, -2X-2Y+Z+2=0$.

Задача 3

Построить касательную плоскость к поверхности $y=x^2+z^2$, перпендикулярную вектору $\vec\<2,1,-1\>$.

Задача 4

Через точку $M(1,2,1)$ провести плоскость, касательную к поверхности $x^2+y^2-z^2=0$.

Ответ. $X-Z=0$, $3X-4Y+5Z=0$.

Задача 5 (Феденко №594)

Докажите, что поверхности \begin z=\mbox(xy), \,\, x^2-y^2=a \end ортогональны в точках их пересечения.

Решение задачи 5

Запишем направляющие векторы нормалей к поверхностям, проведенным в точках их пересечения: \begin \begin \vec_1&=\left\<\frac<\mbox^2(x_0y_0)>,\frac<\mbox^2(x_0y_0)>,-1\right\>,\\ \vec_2&=\left\<2x_0,-2y_0,0\right\>. \end \end Скалярные произведения векторов $n_1$ и $n_2$ равны нулю, следовательно векторы ортогональны. \begin n_1\cdot n_2=0. \end

Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности σ в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М0.
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M0(x0,y0,z0) имеет вид:

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M0(0;1).
Решение. Запишем уравнения касательной в общем виде: z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 0 , y0 = 1 , тогда z0 = 5
Найдем частные производные функции z = x^3+5*y :
f’x(x,y) = (x 3 +5•y)’x = 3•x 2
f’x(x,y) = (x 3 +5•y)’y = 5
В точке М0(0,1) значения частных производных:
f’x(0;1) = 0
f’y(0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 5 = 0(x — 0) + 5(y — 1) или -5•y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M0(1;0;1).
Решение. Находим частные производные функции. Поскольку функция задана в неявном виде, то производные ищем по формуле:

Для нашей функции:

Тогда:

В точке М0(1,0,1) значения частных производных:
f’x(1;0;1) = -3 /16
f’y(1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 1 = -3 /16(x — 1) + 0(y — 0) или 3 /16•x+z- 19 /16 = 0

Пример . Поверхность σ задана уравнением z= y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.
Найдем частные производные функции z= f(x, y) = y/x + xy – 5x 3 :
fx’(x, y) = (y/x + xy – 5x 3 )’x = – y/x 2 + y – 15x 2 ;
fy’ (x, y) = (y/x + xy – 5x 3 )’y = 1/x + x.
Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

Пример №1 . Дана функция z=f(x,y) и две точки А(х0, y0) и В(х1,y1). Требуется: 1) вычислить значение z1 функции в точке В; 2) вычислить приближенное значение z1 функции в точке В исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x0,y0,z0).
Решение.
Запишем уравнения касательной в общем виде:
z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 1, y0 = 2, тогда z0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f’x(x,y) = (x 2 +3•x•y•+y 2 )’x = 2•x+3•y 3
f’x(x,y) = (x 2 +3•x•y•+y 2 )’y = 9•x•y 2
В точке М0(1,2) значения частных производных:
f’x(1;2) = 26
f’y(1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0:
z — 25 = 26(x — 1) + 36(y — 2)
или
-26•x-36•y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).
Скачать решение

Уравнение кривой и поверхности

Определение. Пусть g – некоторая кривая на плоскости, а j(x, y) – функция двух переменных. Говорим, что уравнение

есть уравнение кривой g в неявном виде, если координаты любой точки MÎ g удовлетворяют (1), и обратно, каждая

пара (x, y) чисел, удовлетворяющих (1), задает точку M(x, y) на кривой.

Подчеркнем, что при составлении уравнений следствие обязательно надо проверять в обе стороны.

Пример 1. Уравнение

задает на плоскости пару прямых (см.чертеж). Координаты любой точки A(x, yl1 удовлетворяют (*), но нельзя

сказать, что (*) есть уравнение l1 , поскольку есть еще точки, координаты которых удовлетворяют (*), но на l1 эти точки не лежат.

С другой стороны, каждая точка, координаты которой удовлетворяют уравнению

x – 2 = 0, (**)

лежит на фигуре l1U l2 , но нельзя сказать что (**) задает эту фигуру, поскольку есть еще точки на l1U l2, координаты которых (**) не удовлетворяют.

Пример 2. Составим уравнение окружности g радиуса R с центром в точке O¢(a, b). Пусть M(x, y) – произвольная точка окружности g . Тогда

Обратно, если координаты точки M(x, y) удовлетворяют (2), то ½O¢M½= R, а значит, MÎg. Таким образом (2) и есть уравнение нашей окружности.

Если из уравнения (1) удается выразить одну координату через другую, то получим уравнение в явном виде:

Не всегда удается привести неявное уравнение кривой к явному виду. В каком случае это возможно гласит теорема о неявной функции, изучаемая в курсе математического анализа. Например, с уравнением окружности это сделать нельзя.

Предположим, что точка движется по кривой. Тогда ее координаты изменяются со временем:

x = j( t ),

При этом параметр t изменяется в определенных пределах: tÎI, где I – интервал числовой прямой. Говорим, что (4) есть параметрические уравнения кривой g, если точка M(x, y) лежит на кривой g тогда и только тогда, когда найдется такое tÎI, что будут выполнены оба равенства (4) одновременно. При этом, обязательно к системе (4) надо добавлять интервал изменения параметра. Физический смысл параметра в (4) не всегда время.

Пример 2. Параметрические уравнения окружности радиуса R с центром в начале координат имеют вид:

x = R·cos a ,

y = R·cos a , aÎR .

Не важно, что для одной и той же точки

может найтись несколько (или даже

бесконечно много) соответствующих ей

значений параметра. Это не запрещается.

Пример 3.Уравнения

x = t 2 ,

задают полукубическую параболу. Уравнения

x = e 2 t ,

тоже задают полукубическую параболу, но не всю, а только ее верхнюю половину. Для точки M, лежащей ниже оси, Ox не найдется такого t, для которого выполнено (***).

Определение. Пусть F – некоторая поверхность в пространстве, а F(x, y, z) – функция от трех переменных. Говорим, что

есть уравнение поверхности F в неявном виде, если координаты любой точки MÎF удовлетворяют (6), и обратно, каждая пара (x, y) чисел, удовлетворяющих (6), задает точку M(x, y, z) на поверхности.

Так же, как и для кривой, при составлении уравнения поверхности, необходимо проверять следствие в обе стороны.

Упражнение. Самостоятельно докажите, что сфера радиуса R с центром в точке O¢(a, b, с) задается уравнением

Если из уравнения (6) удается выразить одну переменную через две другие, то получим уравнение поверхности в явном виде: z = f (x, y). Вопрос, когда это возможно сделать, изучается в курсе математического анализа. Уравнение сферы невозможно переписать в явном виде.

Кривая в пространстве одним уравнением, как правило, не задается. Бывают исключительные случаи, типа уравнения x 2 + y 2 = 0, которое задает прямую – ось Oz. Кривая в пространстве обычно задается системой из двух уравнений

F1(x, y, z) = 0,

Каждое из уравнений в отдельности задает поверхность. Если координаты

точки удовлетворяют системе, то она лежит на двух поверхностях одновременно, т.е. MÎF1IF2. Таким образом, система (8) задает линию пересечения двух поверхностей (хотя заметим, что не всегда это пересечение будет кривой). Аналогично, если мы хотим найти точки пересечения любых двух множеств, заданных своими уравнениями, мы должны объединить данные уравнения в одну систему.

Пример 4. Система уравнений

x 2 + y 2 + z 2 = R 2 .

задает окружность в плоскости Oxy. Первое уравнение системы задает сферу с центром в начале координат, а второе – плоскость Oxy. Их пересечение есть окружность g. Если подставить z = 0 в первое уравнение, то получим

Казалось бы, можно сказать, что это и есть уравнение окружности g. Но это не так. Уравнение (**** )

задает цилиндрическую поверхность (см. параграф «цилиндрические и конические поверхности»). Подставляя z = 0 в первое уравнение системы, нельзя отбрасывать при этом само уравнение z = 0.

Также кривая в пространстве может быть задана параметрическими уравнениями вида

x = j( t ),

где I – интервал числовой прямой. С параметрическими уравнениями поверхности мы встретимся в разделе «Дифференциальная геометрия».

Обозначим – радиус-вектор произвольной точки M(x, y, z) на кривой, т.е. вектор с координатами, составленными из неизвестных (x, y, z), а – вектор с координатами (j( t ), y( t ), s( t )). Тогда параметрические уравнения кривой можно переписать в виде одного векторного уравнения


источники:

http://math.semestr.ru/math/tangent-plane.php

http://lektsii.org/8-47911.html