Как найти общий интеграл уравнения

Примеры решения дифференциальных уравнений с ответами

Простое объяснение принципов решения дифференциальных уравнений и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения дифференциальных уравнений

Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x , как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х) , с помощью которой можно обратить уравнение в равенство.

Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.

Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.

Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).

Примеры решения дифференциальных уравнений

Задание

Решить дифференциальное уравнение xy’=y.

Решение

В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь

переписываем дифференциальное уравнение, получаем

Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем

Далее интегрируем полученное уравнение:

В данном случае интегралы берём из таблицы:

После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.

– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const

Ответ

Задание

Найти частное решение дифференциального уравнения

Решение

Действуем по тому же алгоритму, что и в предыдущем решении.

Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:

Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:

Если – это константа, то

0\]» title=»Rendered by QuickLaTeX.com» />

– тоже некоторая константа, заменим её буквой С:

– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.

Получаем общее решение:

Ответ

Задание

Решить дифференциальное уравнение

Решение

В первую очередь необходимо переписать производную в необходимом виде:

Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:

После разделения переменных, интегрируем уравнение, как в примерах выше.

Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:

В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.

Далее упрощаем общий интеграл:

Приводим полученный общий интеграл к виду: F(x,y)=C:

Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0)=ln2.

Решение

Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.

Начинаем разделять переменные и интегрировать уравнение:

Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.

Получаем общее решение:

Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Задание

Решить дифференциальное уравнение

Решение

При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:

В данном случае константу C считается не обязательным определять под логарифм.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1)=e. Выполнить проверку.

Решение

Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:

Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:

можно выразить функцию в явном виде.

Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Проверка

Необходимо проверить, выполняется ли начальное условие:

Из равенства выше видно, что начальное условие y(1)=e выполнено.

Далее проводим следующую проверку: удовлетворяет ли вообще частное решение

дифференциальному уравнению. Для этого находим производную:

Подставим полученное частное решение

и найденную производную в исходное уравнение

Получено верное равенство, значит, решение найдено правильно.

Задание

Найти общий интеграл уравнения

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Ответ

Задание

Найти частное решение ДУ.

Решение

Данное ДУ допускает разделение переменных. Разделяем переменные:

Найдем частное решение (частный интеграл), соответствующий заданному начальному условию

Подставляем в общее решение

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

(здесь дробь раскладывается методом неопределенных коэффициентов)

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных.

Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Как найти общий интеграл уравнения

1. У равнения с разделяющимися переменными

Общий вид уравнений

С учетом равенства

уравнение (8.10) может быть записано в виде .

Разделим обе части на произведение функций M ( x ) Q ( y ) (при условии ) и после сокращения получим: . Так как переменные разделены, проин тегрируем уравнение почленно: . После нахождения интегралов получаем общий интеграл исходного ДУ. Предполагая, что , мы могли потерять решения. Следовательно, необходимо подстановкой M ( x )=0, Q ( y )=0 в исходное уравнение сделать проверку. В том случае, когда данные функции удовлетворяют уравнению, они также являются его решениями.

Пример 8.2. Проинтегрировать уравнение .

Решение . Представим уравнение в виде . Разделим переменные: . Проинтегрируем уравнение:

После применения теоремы о сумме логарифмов и потенцирования получаем

2. Однородные дифференциальные уравнения первого порядка

Общий вид уравнений

где M ( x ; y ) и N ( x ; y )– однородные функции аргументов x и y одного и того же измерения m , то есть имеют место равенства

Метод решения уравнения (8.12) – деление на переменную x в степени измерения m : . Далее уравнение преобразуются с помощью следующей замены:

Однородное уравнение (8.12) принимает вид: – уравнение с разделяющимися переменными. Следовательно, дальнейшее решение – по пункту 1.

Пример 8.3. Проинтегрировать уравнение .

Решение. Поделим уравнение на x 2 , получим . После замены (8.14) заданное по условию уравнение принимает вид , . В результате интегрирования получим . После обратной замены – искомый общий интеграл

Пример 8.4. Найти общее решение (общий интеграл) дифференциального уравнения .

Решение . Правая часть уравнения обладает свойством . Поэтому заданное уравнение является однородным дифференциальным уравнением первого порядка. Совершим замену , где u – некоторая функция от аргумента x . Отсюда . Исходное уравнение приобретает вид

или . Разделим переменные: .

После интегрирования обеих частей уравнения получаем

Потенцируя, находим .

Итак, общий интеграл исходного уравнения приобретает вид cy = x 2 + y 2 , где c – произвольная постоянная

3. Дифференциальные уравнения первого порядка, приводящиеся к однородным или к уравнениям с разделяющимися переменными

Общий вид уравнений

где – числа.

При c 1 = c 2 = 0 уравнение является однородным. Рассмотрим два случая при c 1 и c 2 не равных нулю одновременно.

1) Определитель . Вводят новые переменные u и v , положив x = u + x 0 , y = v + y 0 , где ( x 0 ; y 0 ) – решение системы уравнений .

В результате данной подстановки уравнение (8.15) становится однородным.

Пример 8.5. Найти общее решение (общий интеграл) дифференциального уравнения .

Решение . Определитель , следовательно, решаем систему уравнений . Получаем значения x 0 = – 1; y 0 =2, с использованием которых осуществляем замену x = u – 1; y = v + 2, при этом . Заданное по условию ДУ принимает вид:

, (*) – однородное ДУ относительно функции v и переменной u .

С помощью формул интегрирования (4.8) и (4.17) получаем:

Осуществим обратную подстановку :

– общий интеграл исходного уравнения

2) Определитель . Это означает пропорциональность коэффициентов или

Пример 8.6. Найти общее решение (общий интеграл) дифференциального уравнения

Решение . Определитель , следовательно, осуществляем замену

Исходное уравнение принимает вид:

Далее . Разделим переменные: или . Проинтегрируем уравнение:

После обратной замены получим: – общий интеграл исходного уравнения

4. Линейные дифференциальные уравнения первого порядка

Общий вид уравнений

где P ( x ) и Q ( x ) – заданные функции (могут быть постоянными).

Уравнение (8.16) может быть решено двумя способами.

1) Метод Бернулли-Фурье состоит в том, что решение ищется в виде произведения двух неизвестных функций y ( x )= u ( x ) v ( x ) или коротко y = u v , при этом . Одна из функций будет представлять общую часть решения и содержать константу интегрирования c , другая функция может быть взята в частном виде при конкретном значении константы (общее решение ДУ первого порядка должно содержать одну константу интегрирования). Подставим выражения y и в (8.16), после чего оно принимает вид:

Функцию v ( x ) подберем в частном виде так, чтобы выражение в скобках обратилось в ноль. Для этого решим уравнение с разделяющимися переменными или . Отсюда в результате интегрирования получим: . Так функция v ( x ) выбиралась произвольно, то можно положить c = 1, тогда . Подставив найденную v ( x ) в (8.17), приходим к еще одному уравнению с разделяющимися переменными . Интегрируя его, получим функцию . Общее решение исходного ДУ (8.16) принимает вид

Пример 8.7. Проинтегрировать уравнен ие с помощью метода Бернулли.

Решение . Данное уравнение является линейным ДУ первого порядка с функциями . Применим подстановку y = u v , где u и v – некоторые функции аргумента x . Так как y = u v , то , и заданное уравнение принимает вид:

Выберем функцию u так, чтобы выражение, стоящее в скобках, обращалось в ноль, то есть и л и

Полагая c = 1, получим u = cos x . При таком выборе функции u уравнение (**) примет вид:

. Отсюда v=tg x+c . Тогда – общее решение заданного уравнения.

Общее решение заданного ДУ можно также получить, пользуясь непосредственно формулой (8.18):

По условию задачи имеем: P ( x )= tg x , . Следовательно, . Так как , то с использованием основного логарифмического тождества получаем:

Таким образом, – общее решение исходного дифференциального уравнения

2) Метод Лагранжа иначе называют методом вариации произвольной постоянной. Рассмотрим сначала соответствующее линейное однородное ДУ первого порядка, то есть исходное уравнение без правой части . Разделив переменные и проинтегрировав, в найденном решении полагают постоянную c функцией c ( x ). После этого функцию y дифференцируют и вместе с подставляют в исходное уравнение. При этом получают уравнение относительно неизвестной функции c ( x ), отыскав которую, подставляют ее в y – общее решение заданного линейного неоднородного уравнения (с правой частью).

Пример 8.8. Проинтегрировать уравнение с помощью метода Лагранжа (сравни с пример ом 8.7).

Решение . Решим сначала соответствующее линейное однородное ДУ первого порядка или . Разделим переменные: . В результате интегрирования получаем: – общее решение соответствующего однородного уравнения. Применим метод варьирования константы, то есть предположим c = c ( x ). Тогда общее решение исходного линейного неоднородного уравнения будет иметь вид: . Подставим y и в исходное уравнение:

Подставляя найденное c ( x ) в y , имеем общее решение линейного неоднородного уравнения:

5. Уравнения Бернулли

Общий вид уравнений

При n = 1 (8.1 9) – уравнение с разделяющимися переменными. При n = 0 (8.1 9) – линейное ДУ.

Рассмотрим . Метод решения – деление уравнения на , после чего (8.1 9) принимает вид . С помощью замены z = yn +1 исходное уравнение становится линейным относительно функции z ( x ):

то есть его решение находится аналогично пункту 4. На практике искать решение уравнения (8.17) удобнее методом Бернулли в виде произведения неизвестных функций y = u v . Заметим, что y = 0 – всегда является решением исходного уравнения (8.17).

Пример 8.9. Проинтегрировать уравнение .

Решение. Заданное уравнение является уравнением Бернулли. Положим y = u v , тогда и уравнение примет вид:

Выберем функцию u так, чтобы выполнялось равенство: . Разделим переменные и проинтегрируем:

Тогда заданное уравнение после сокращения на u примет вид: или – уравнение с разделяющимися переменными. Находим его общее решение: . Интегрируя последнее уравнение, получим: . Следовательно, общее решение заданного уравнения имеет вид:

6. Уравнения в полных дифференциалах

6.1. Общий вид уравнений

где левая часть есть полный дифференциал некоторой функции F ( x ; y ), то есть . В этом случае ДУ (8.21) можно записать в виде , а его общий интеграл будет F ( x ; y )= c .

Условие, по которому можно судить, что выражение является полным дифференциалом, можно сформулировать в виде следующей теоремы.

Теорема 8.2. Для того чтобы выражение , где функции M ( x ; y ) и N ( x ; y ), их частные производные и непрерывны в некоторой области D плоскости x 0 y , было полным дифференциалом, необходимо и достаточно выполнение условия

(8.22)

Таким образом, согласно определению полного дифференциала (6.6) должны выполняться равенства:

Формула (8.22) представляет собой теорему Шварца, согласно которой смешанные производные второго порядка функции F ( x ; y ) равны.

Зафиксируем переменную y и проинтегрируем первое уравнение из (8.23) по x , получим:

Здесь мы применили метод вариации произвольной постоянной, так как предположили, что константа c зависит от y (либо является числом). Продифференцировав (8.24) по переменной y и приравняв производную к функции N ( x ; y ), мы получим уравнение для нахождения неизвестной c ( y ). Подставив c ( y ) в (8.24), находим функцию F ( x ; y ) такую, что .

Пример 8.10. Решить уравнение .

Решение. Здесь функция .

Проверим условие (8.22): . Следовательно, левая часть заданного уравнения представляет собой полный дифференциал некоторой функции F ( x ; y ). Для ее отыскания проинтегрируем функцию M ( x ; y ) по переменной x , считая y = const :

Пусть c = c ( y ), тогда . Продифференцируем данную функцию по y , получим . Отсюда .

Найденное c ( y ) подставляем в функцию F ( x ; y ), получаем решение заданного ДУ:

Если условие (8.22) не выполняется, то ДУ (8.21) не является уравнением в полных дифференциалах.

Однако это уравнение иногда можно привести к уравнению в полных дифференциалах умножением его на некоторую функцию μ ( x ; y ), называемую интегрирующим множителем .

Чтобы уравнение было уравнение в полных дифференциалах, должно выполняться условие

Выполнив дифференцирование и приведя подобные слагаемые, получим: . Для нахождения μ ( x ; y ) надо проинтегрировать полученное ДУ в частных производных. Решение этой задачи не простое. Нахождение интегрирующего множителя может быть упрощено, если допустить существование μ как функции только одного аргумента x либо только y .

6.2. Пусть μ = μ ( x ). Тогда уравнение (8.25) принимает вид:

При этом подынтегральное выражение должно зависеть только от x.

6.3. Пусть μ = μ ( y ). Тогда аналогично можно получить

где подынтегральное выражение должно зависеть только от y .

Пример 8.11. Решить уравнение .

Решение . Здесь , то есть . Проверим существование интегрирующего множителя. По формуле (8.26) составляем подынтегральное выражение:

7. Дифференциальные уравнения, не разрешенные относительно производной

К уравнениям данного вида относятся уравнения Лагранжа и Клеро, которые образуют достаточно большой класс ДУ, решаемых методом введения параметра .

7.1. Уравнение Лагранжа

Общий вид уравнений

где φ и ψ– известные функции от . После введения параметра уравнение (8.28) принимает вид

Продифференцируем его по x :

Полученное уравнение (8.30) является линейным уравнением относительно неизвестной функции x = x ( p ). Решив его, найдем:

Исключая параметр p из уравнений (8.29) и (8.31), получаем общий интеграл уравнения (8.28) в виде y = γ ( x ; c ).

Примечание. При переходе к уравнению (8.30) мы делили на . При этом могли быть потеряны решения, для которых или p = p 0 = const . Это означает, что p 0 является корнем уравнения p = φ ( p )=0 (смотри уравнение (8.30)). Тогда решение для уравнения (8.28) является особым

7.2. Уравнение Клеро представляет собой частный случай уравнения Лагранжа при , следовательно, его общий вид

. (8.32)

Вводим параметр , после чего уравнение (8.30) записывается так:

Продифференцируем уравнение (8.33) по переменной x:

При получаем частное решение уравнения в параметрической форме:

Это – особое решение уравнения Клеро, так как оно не содержится в формуле общего решения уравнения.

Пример 8.12. Решить уравнение Клеро .

Решение. Согласно формуле (8.32) общее решение имеет вид y = cx + c 2 . Особое решение уравнения получим по (8.33) в виде . Отсюда следует: , то есть


источники:

http://mathdf.com/dif/ru/

http://www.sites.google.com/site/vyssaamatem/glava-viii-elementy-teorii-obyknovennyh-differencialnyh-uravnenij/viii-2-nekotorye-vidy-differencialnyh-uravnenij-pervogo-poradka