Как найти ограничения в уравнении

Область допустимых значений функции

О чем эта статья:

Допустимые и недопустимые значения переменных

В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.

Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений.

Чтобы дать верное определение области допустимых значений, разберемся, что такое допустимые и недопустимые значения переменной.

Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.

Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.

Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.

Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.

Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми.

В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного.

Пример 1

Рассмотрим выражение

В выражении три переменные (a, b, c).

Запишем значения переменных в виде: a = 0, b = 1, c = 2.

Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ:

Таким же образом можем выяснить, какие значения переменных — недопустимые.

Подставим значения переменных в выражение

На ноль делить нельзя.

Что такое ОДЗ

ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».

Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.

Пример 2

Рассмотрим выражение

ОДЗ такого выражения выглядит следующим образом: ( — ∞; 3) ∪ (3; +∞).

Читать запись нужно вот так:
Область допустимых значений переменной x для выражения — это числовое множество ( — ∞; 3) ∪ (3; +∞).

Пример 3
Рассмотрим выражение

ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.

Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как найти ОДЗ: примеры решения

Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.

Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено.

Мы не можем вычислить значение выражения, если:

  • требуется извлечение квадратного корня из отрицательного числа;
  • присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль).

Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам.

Давайте потренируемся находить ОДЗ.

Пример 4

Найдем область допустимых значений переменной выражения a 3 + 4 * a * b − 6.

В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a 3 + 4 * a * b − 6 при любых значениях переменной.

ОДЗ переменных a и b — это множество таких пар допустимых значений (a, b), где a — любое число и b — любое число.

Ответ: (a и b), где a — любое число и b — любое число.

Пример 5

Найдем область допустимых значений (ОДЗ) переменной выражения

Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль.

Это значит, что мы может сказать, что ОДЗ переменной a в выражении — пустое множество.

Пустое множество изображается в виде вот такого символа Ø.

Пример 6

Найдем область допустимых значений (ОДЗ) переменных в выражении

Если есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.

Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.

Запомните

  • Если число входит в ОДЗ, то около числа ставим квадратные скобки.
  • Если число не входит в ОДЗ, то около него ставятся круглые скобки.

Например, если х > 6, но х

Зачем учитывать ОДЗ при преобразовании выражения

Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.

Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.

Тождественное преобразование может:

  • расширить ОДЗ
  • никак не повлиять на ОДЗ
  • сузить ОДЗ

Рассмотрим каждый случай в отдельности.

Пример 7

Рассмотрим выражение a + 4/a — 4/a

Поскольку мы должны следить за тем, чтобы в выражении не возникало деление на ноль, определяем условие a ≠ 0.

Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).

В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a.

ОДЗ для a — это R — множество всех вещественных чисел.

Преобразование расширило ОДЗ — добавился ноль.

Пример 8

Рассмотрим выражение a 2 + a + 4 * a

ОДЗ a для этого выражения — множество R.

В выражении есть подобные слагаемые, выполним тождественное преобразование.

После приведения подобных слагаемых выражение приняло вид a 2 + 5 * a

ОДЗ переменной a для этого выражения — множество R.

Это значит, что тождественное преобразование никак не повлияло на ОДЗ.

Пример 9

Рассмотрим выражение

ОДЗ a определяется неравенством (a — 1) * (a — 4) ≥ 0.

Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).

Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.

Приведем выражение к виду

ОДЗ переменной a для этого выражения определяется неравенствами:
a — 1 ≥ 0
a — 4 ≥ 0

Решив систему линейных неравенств, получаем множество [4; + ∞).

Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).

Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.

Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1 x — y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 — 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 — 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z — 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x — y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ — 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Найти ОДЗ выражения 1 3 — x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Найти ОДЗ заданного выражения x + 2 · y + 3 — 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Определить ОДЗ выражения вида 1 x + 1 — 1 + log x + 8 ( x 2 + 3 ) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 — 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 — 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x — 1 · x — 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x — 1 · x — 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x — 1 ≥ 0 , x — 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Рассмотрим пример выражения x — 1 · x — 3 , когда х = — 1 . При подстановке получим, что — 1 — 1 · — 1 — 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x — 1 · x — 3 , тогда при вычислении получим, что 2 — 1 · 2 — 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Задача C1: показательные уравнения с ограничением

В большинстве учебников при подготовке к ЕГЭ по математике рассматриваются задачи C1, состоящие из тригонометрических уравнений. Учителя рассказывают о многочисленных приемах работы с тригонометрией, но совершенно упускают из виду, что существует множество задач C1 совсем другого типа. Например, вместо «классического» тригонометрического уравнения может стоять показательное и логарифмическое. На первый взгляд, такие уравнения решаются даже легче, однако основные проблемы начинаются дальше — в процессе отборе корней.

Сегодня мы разберем еще одну задачу С1, но в отличии от предыдущих, она будет не тригонометрическим уравнением, а показательным. Но даже это показательное уравнение, будет отнюдь не самым простым.

Правила работы со степенями

Прежде чем решать любое показательное уравнение, хотел бы обратить ваше внимание на правило работы со степенными показателями. Таких правил, основных, самых важных, всего три, и все их вы уже, наверняка, знаете:

Вот и все основные правила, которые нам нужно знать для решения сегодняшнего примера.

Решаем задачу

Решите показательное уравнение. Найдите все корни этого уравнения, принадлежащие промежутку:

25 x− 3 2 −12⋅ 5 x−2 +7=0,x∈ ( 2; 8 3 )

Давайте внимательно посмотрим на наше показательное уравнение: у нас есть 5 в каком-то степенном значении и 25, кроме того, 25= 5 2 25=<<5>^<2>>. Теперь мы можем переписать наше исходное уравнение следующим образом:

( 5 2 ) x− 3 2 −12⋅ 5 x−2 +7=0

Вот здесь мы вспоминаем формулу возведения степени в степень:

5 2⋅ ( x− 3 2 ) −12⋅ 5 x−2 +7=0

5 2x−3 −12⋅ 5 x−2 +7=0

5 2x−4+1 −12⋅ 5 x−2 +7=0

5 2x−4 ⋅ 5 1 −12⋅ 5 x−2 +7=0

5 2 (x−2) ⋅5−12⋅ 5 x−2 +7=0

Обратите внимание: на каждом шаге преобразовании мы работали исключительно с первым элементом, который изначально звучал как 25 x− 3 2 <<25>^<2>>>. В итоге мы получил конструкцию вида 5 2(x−2) ⋅5 <<5>^<2(x-2)>>\cdot 5. Возникает сразу два вопроса: в первую очередь, зачем нам нужно было это делать?

Потому что теперь мы можем сделать следующую замену:

5 x−2 =t −12⋅ 5 x−2 +7=0

Теперь у нас получится красивое квадратное показательное уравнение:

Но есть одна проблема: как добавить 1 и вычесть ее на одном из шагов? Все очень просто. У нас уже есть готовая конструкция 5 x−2 <<5>^>. Следовательно, при возведении ее в квадрат, мы должны перемножить степенные показатели:

5 x−2 = 5 (x−2)2 = 5 2x−4

Именно в этом состоит тактика решения показательных уравнений, основания степеней в которых неодинаковые, в нашем случае это 5 и 25.

Еще раз: чтобы там не стояло в показателе старшего элемента, мы должны преобразовать его таким образом, чтобы получился удвоенный показатель младшего элемента. И тогда, как мы уже убедились, получится красивое квадратное показательное уравнение, которое легко решается. Давайте его решим.

Очевидно, поскольку перед t 2 <^<2>> стоит 5, это уравнение не является приведенным, поэтому решать мы его будем через дискриминант. Итак, дискриминант равен:

D=144-4\cdot 5\cdot 7=4

Корень равен 2. Находим t t:

Итак, мы получили корни квадратного уравнения: 7 5 \frac<7> <5>и 1. Теперь возвращаемся к нашему исходному выражению и вспоминаем, что t= 5 x−2 t=<<5>^>:

5 x−2 =1 5 x−2 = 5 0 x−2=0 x=2

Подставляем второй корень:

Другими словами, мы можем переписать наше показательное уравнение следующим образом:

5 x−2 = 5 log 5 7 5

Почему мы выбрали основание именно 5? Потому что у нас слева стоит 5 x−2 <<5>^>, т. е. основание у нас задается самим уравнением. Теперь мы можем избавиться от 5:

Вот наши два ответа: 2 и log535.

Мы решили первую часть задачи и нашли корни. Теперь из этих корней нам нужно отобрать те, которые принадлежат интервалу \[\left( 2;\frac<8> <3>\right)\].

Для этого давайте для начала перепишем значения, входящие в сам интервал. Дело в том, что 8 3 \frac<8> <3>— это дробь, поэтому из нее нужно выделить целую часть. Интервал будет выглядеть следующим образом:

x˜\in \left( 2;2\frac<2> <3>\right)

Из двух корней, 2 и log535, нам нужно выбрать такие числа, которые принадлежат нашему интервалу. В первую очередь, давайте сразу заметим, что x=2 x=2 не принадлежит нашему интервалу:

x\notin \left( 2;2\frac<2> <3>\right)

Потому что, с одной стороны, 2 является концом интервала, но, с другой стороны, поскольку скобки круглые, сама 2 не принадлежит этому интервалу.

Остается лишь один корень log535. Разумеется, поскольку это один единственный ответ нашего показательного выражения, то у нас есть все основания полагать, что он лежит на данном интервале, однако если мы не обоснуем это утверждение, то проверяющие снимут из нас 1 балл. Другими словами, нам нужно доказать, что число log535 лежит на нашем интервале. Но проблема в том, что мы не знаем, чему равен log535. И как поступать в таком случае? Сейчас внимание! Я расскажу вам четкий пошаговый алгоритм, который часто требуется применять в задачах С1, С3 и С5 из ЕГЭ по математике, т. е. всех алгебраических задачах части С.

Пошаговый алгоритм решения задач

Итак, нам нужно узнать, чему хотя бы примерно равен log535. Прежде всего, давайте рассмотрим значения вида

Мы просто перебираем 5 натурального степенного значения. Получим:

log 5 5 1 = log 5 5

log 5 5 2 = log 5 25

log 5 5 3 = log 5 125

Разумеется, можно было бы выписать больше, но нам важно понять, между какими числами видами 5, 25 и 125, лежит наше исходное 35. Очевидно, оно лежит между 25 и 125. Следовательно, log535 будет лежать между

<<\log >_<5>>125. Также мы можем посчитать показательное выражение:

Отсюда заключаем, что

˜2 ( 2;2 2 3 ) \left( 2;2\frac<2> <3>\right), т. е. то, что логарифм лежит на промежутке от 2 до 3, нам не помогает. Поэтому переходим к следующему шагу и начинаем рассматривать половинки, значения вида 1,5; 2,5; 3,5. Давайте посмотрим: возьмем среднее арифметическое чисел 2 и 3 и возводим 5 в степень этого среднего арифметического:

log 5 5 2+3 2 = log 5 5 2,5 = log 5 5 2 ⋅ 5 1 2 = log 5 25 5 √

А теперь нам нужно понять, что больше

25\sqrt <5>или 35. Давайте сравним их:

7\bigcup 5\sqrt<5>\uparrow 2

49\bigcup 25\cdot 5

49 log 5 35 log 5 25 5 √

<<\log >_<5>>35 ˜ 2 log 5 35 5 10

˜2 2 log 5 35 2 5 10 2 3

=<<\log >_<5>>35 после отбора с учетом ограничений.

Еще раз, это очень важный шаг. Когда у нас есть логарифм по какому-то нормальному основанию, но от числа, которое не считается, т. е. не является точным показателем основания, мы сначала рассматриваем целые значения и находим, между степенями каких чисел лежит наше число. В нашем случае получилось, что

<<\log >_<5>>35 будет лежать между

<<\log >_<5>>125, и мы получили такое неравенство

2 5 1,5 <<5>^<1,5>> или 5 2,5 <<5>^<2,5>>, у нас, естественно, получаются корни, которые потом придется сравнивать при помощи галочки неизвестности. Однако не стоит переживать, это сравнение не вызывает каких-либо сложностей, и после небольшой тренировки сравнивать корни таким образом сможет даже неподготовленный ученик. В результате мы получили уточненное ограничение, которое уже точно даст нам понять, принадлежит ли наш корень данному интервалу или не принадлежит.

Обратите внимание, более глубокого разделения, т. е. уже на четверти, а не на половинки в реальной части С ЕГЭ по математике я не видел ни разу, т. е. шага выписывания половинок уже будет достаточно. Более сложное задание на настоящем ЕГЭ по математике вам точно не попадется. Вот и все, получив уточненное ограничение, вы уже сможете обоснованно утверждать, что данный корень принадлежит указанному интервалу. И, следовательно, является ответом ко второй части задачи. Вы получите два балла из двух возможных на ЕГЭ по математике. Так что обязательно изучите этот прием. Он будет очень полезен не только в задачах С1 в ЕГЭ по математике, но также и в задачах С3 и С5.

Ключевые моменты

На примере этой задачи C1из ЕГЭ по математике хочу прояснить сразу два принципиально важных моментов:

Если вы видите, что уравнение сводится к квадратному, то старайтесь обозначать новой переменной степенное выражение с наименьшим показателем. Это избавит вас от возникновения дробей в дальнейших вычислениях и значительно упростит итоговое решение;

Если при решении показательного уравнения возник «некрасивый логарифм» (в нашем случае это

<<\log >_<5>>35), для получения его примерного значения сначала считайте натуральные степенные показатели:

<<\log >_<5>>52; log 5 5 3 <<\log >_<5>><<5>^<3>> . Если же этих ограничений окажется недостаточно, начинайте перебирать числа, стоящие посередине между соседними натуральными:


источники:

http://zaochnik.com/spravochnik/matematika/vyrazhenija/oblast-dopustimyh-znachenij-odz/

http://www.berdov.com/ege/equation-root/pokazatelnoe-uravnenie-ogranichenie/