Как найти ортоцентр по уравнениям сторон

Ортоцентр треугольника

Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой H. В зависимости от вида треугольника ортоцентр может находиться внутри треугольника (в остроугольных), вне его (в тупоугольных) или совпадать с вершиной (в прямоугольных — совпадает с вершиной при прямом угле).

Пример

В приведенном ниже примере, O это ортоцентр..

Метод расчета ортоцентра треугольника

Пускай даны точки треугольника A(4,3), B(0,5) и C(3,-6).

Шаг 1

Найдем наклоны сторон AB, BC и CA используя формулу y2-y1/x2-x1. Наклон обозначим ‘m’.

  • Наклон AB (m) = 5-3/0-4 = -1/2.
  • Наклон BC (m) = -6-5/3-0 = -11/3.
  • Наклон CA (m) = 3+6/4-3 = 9.

Шаг 2

Теперь, давайте вычислим наклон высоты AD, BE и CF который перпендикулярен сторонам BC, CA и AB соответственно. Наклон высоты = -1/наклон противоположной стороны треугольника.

  • Наклон AD = -1/наклон BC = 3/11.
  • Наклон BE = -1/наклон CA = -1/9.
  • Наклон CF = -1/наклон AB = 2.

Шаг 3

После того, как мы нашли наклон перпендикуляров, мы должны найти уравнение линий AD, BE и CF. Давайте найдем уравнение линии AD с точкой (4,3) и наклоном 3/11.
Формула, для нахождения уравнения ортоцентра треугольника = y-y1 = m(x-x1) y-3 = 3/11(x-4)

1) Упростив выше приведенное уравнение, мы получим 3x-11y = -21

Кроме того, мы должны найти уравнение линий BE и CF. Уравнение для линии BE с точкой (0,5) и наклоном -1/9 = y-5 = -1/9(x-0)

2) Упростив выше приведенное уравнение, мы получим x + 9y = 45

Уравнение для линии CF с точкой (3,-6) и наклоном 2 = y+6 = 2(x-3)

3) Упростив выше приведенное уравнение, мы получим 2x — y = 12

Шаг 4

Найдем значение x и y решив 2 любых из 3 уравнений.

В этом примере, значение x и y (8.05263, 4.10526) которые являются координатами Ортоцентра (o).

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Свойства высот треугольника. Ортоцентр

Схема 1. В треугольнике АВС проведены высоты АМ и СК.
Н – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК

Запомните этот рисунок. Перед вами – схема, из которой можно получить сразу несколько полезных фактов.

1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
, если , и , если

  1. Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
  2. Четырехугольник ВКМН также можно вписать в окружность.
  3. Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
  4. ,где R – радиус описанной окружности .

Докажем эти факты по порядку.

1) Заметим, что на рисунке есть подобные треугольники. Это АВМ и СВК, прямоугольные треугольники с общим углом В, и они подобны по двум углам

Мы получили, что в треугольниках МВК и АВС стороны, прилежащие к углу В, пропорциональны. Получаем, что по углу и двум сторонам.

2) Докажем, что вокруг четырехугольника АКМС можно описать окружность. Для этого необходимо и достаточно, чтобы суммы противоположных углов четырехугольника АКМС были равны .

Пусть ∠ACB=∠BKM=γ (поскольку треугольники МВК и АВС подобны), тогда
– как смежный с углом ВКМ. Получили, что , и это значит, что четырехугольник AKMC можно вписать в окружность.

3) Рассмотрим четырехугольник KBMH. Его противоположные углы ВКН и ВМН — прямые, их сумма равна , и значит, четырехугольник КВМН можно вписать в окружность.

4) По теореме синусов, радиус окружности, описанной вокруг треугольника АВС,

Радиус окружности, описанной вокруг треугольника АНС,
Мы помним, что . Значит, синусы углов АВС и АНС равны, и радиусы окружностей, описанных вокруг треугольников АВС и АНС равны.

5) Докажем, что ,где R – радиус описанной окружности . Поскольку четырехугольник КВМН можно вписать в окружность и углы ВКН и ВМН – прямые, отрезок ВН является диаметром этой окружности. Треугольник МВК также вписан в эту окружность, и по теореме синусов, .

Диаметр окружности, описанной вокруг треугольника АВС, равен Поскольку треугольники МВК и АВС подобны, отношение диаметров описанных вокруг них окружностей равно . Получили, что

Задача ЕГЭ по теме «Высоты треугольника» (Профильный уровень, №16)

2. В остроугольном треугольнике KMN проведены высоты KB и NA.

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и

а) Докажем, что
(по двум углам). Запишем отношение сходственных сторон:
Но это значит, что (по углу и двум сторонам), причем .

— смежный с углом ,
,
,четырехугольник ABNK можно вписать в окружность.
(опираются на одну дугу).


источники:

http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik

http://ege-study.ru/materialy-ege/svojstva-vysot-treugolnika-ortocentr/