Как найти решения уравнения на графике первообразной

Первообразная

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

ФункцияПервообразная
$f(x)=k$$F(x)=kx+C$
$f(x)=x^m, m≠-1$$F(x)=>/+C$
$f(x)=<1>/$$F(x)=ln|x|+C$
$f(x)=e^x$$F(x)=e^x+C$
$f(x)=a^x$$F(x)=/+C$
$f(x)=sinx$$F(x)-cosx+C$
$f(x)=cosx$$F(x)=sinx+C$
$f(x)=<1>/$$F(x)=-ctgx+C$
$f(x)=<1>/$$F(x)=tgx+C$
$f(x)=√x$$F(x)=<2x√x>/<3>+C$
$f(x)=<1>/<√x>$$F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то $<1>/$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Найти первообразную для функции $f(x)=2sin⁡x+<4>//<3>$.

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2=<1>/$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

Итак, общий вид первообразной для заданной функции

Как найти решения уравнения на графике первообразной

На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].

По определению первообразной на интервале (−3; 5) справедливо равенство

Следовательно, решениями уравнения f(x)=0 являются точки экстремумов изображенной на рисунке функции F(x) На рисунке точки, в которых выделены красным и синим цветом. Из них на отрезке [−2;4] лежат 10 точек (синие точки). Таким образом, на отрезке [−2;4] уравнение имеет 10 решений.

На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x) — одна из первообразных функции f(x).

Разность значений первообразной в точках 8 и 2 равна площади выделенной на рисунке трапеции Поэтому

На рисунке изображён график функции y = f(x). Функция — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках и

Приведем другое решение.

Вычисления можно было бы упростить, выделив полный куб:

что позволяет сразу же найти

Приведем ещё одно решение.

Можно было бы найти разность первообразных, используя формулы сокращенного умножения:



Приведем ещё одно решение.

Получим явное выражение для Поскольку

Этот подход можно несколько усовершенствовать. Заметим, что график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:

На рисунке изображён график некоторой функции y = f(x). Функция — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Найдем формулу, задающую функцию график которой изображён на рисунке.

Следовательно, график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:

Еще несколько способов рассуждений покажем на примере следующей задачи.

Ошибки, конечно, нет, но при таком подходе (сдвиг функции) гораздо легче найти уравнение параболы, проходящей через точки (-1;0), (0;3) и (1;0), а потом вычислить интеграл.

Во-первых, до того как была вычислена производная, мы не знали, является ли изображенный на рисунке график параболой. Во-вторых, на наш взгляд, выделить полный квадрат проще, чем решать систему уравнений с тремя переменными.

Но ведь ясно, что если пер­во­об­раз­ная — мно­го­член тре­тьей степени, то про­из­вод­ная — мно­го­член вто­рой степени.

Согласны, если это объяснено, то всё в порядке.

Ошибки, конечно, нет. Но надо ли так подробно решать? Есть первообразная, есть границы интегрирования. S=F(-8)-F(-10)=4

В конце решения есть фраза «Еще не­сколь­ко спо­со­бов рас­суж­де­ний по­ка­жем на при­ме­ре сле­ду­ю­щей за­да­чи» со ссылкой. Там есть разные варианты решения

На рисунке изображен график некоторой функции Пользуясь рисунком, вычислите определенный интеграл

Определенный интеграл от функции по отрезку дает значение площади подграфика функции на отрезке. Область под графиком разбивается на прямоугольный треугольник, площадь которого и прямоугольник, площадь которого Сумма этих площадей дает искомый интеграл

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Задание №1164

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна \frac<4+3><2>\cdot 3=10,5.

Ответ

Задание №1158

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x) , определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

Задание №1155

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3 .

Её площадь равна \frac<5+3><2>\cdot 3=12.

Ответ

Задание №1149

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

Задание №1146

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)\cdot 3^2 -7-(-1^3 +(4,5)\cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

Задание №907

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Ответ

Задание №307

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-\frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18\cdot(-1)^2+221\cdot(-1)-\frac12= -204-\frac12.

F(-5)= (-5)^3+18\cdot(-5)^2+221\cdot(-5)-\frac12= -125+450-1105-\frac12= -780-\frac12.

F(-1)-F(-5)= -204-\frac12-\left (-780-\frac12\right)= 576.

Ответ

Задание №306

Условие

На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

Решение

F(9)-F(3)=S , где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,\:x=9 . Рассмотрим рисунок ниже.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2 . Ее площадь равна \frac<6+1><2>\cdot2=7.

Ответ

Задание №104

Условие

На координатной плоскости изображен график функции y=f(x) . Одна из первообразных этой функции имеет вид: F(x)=-\frac13x^3-\frac52x^2-4x+2 . Найдите площадь заштрихованной фигуры.

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1 , а по оси ординат графиком функции: f(x) . Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1 , по формуле определенного интеграла:

Подставим значение первообразной из условия и получим площадь фигуры:

Ответ

Задание №103

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2) . Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5] .

Решение

Формула первообразной имеет следующий вид:

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0 , то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6 . Значит уравнение f(x) = 0 имеет 3 решения.


источники:

http://ege.sdamgia.ru/test?theme=183

http://academyege.ru/theme/pervoobraznaya-funkcii.html