Как найти ускорение из уравнения

Как определить величину ускорения: подробный анализ

Ускорение скорость, с которой скорость изменения. Поскольку скорость является векторной величиной, ускорение также является векторной величиной. В результате требуется не только направление, но и величина. Итак, в этой статье мы рассмотрим, как определить величину ускорения.

Мы используем формулы и соотношения для расчета величины. Мы можем представить величину в единицах. Поскольку ускорение определяется как изменение скорости во времени, единицей СИ для него является . На ускорение влияют различные факторы, такие как скорость, время, сила и т. Д. Мы рассмотрим несколько различных методов оценки величины ускорения. Давайте читать дальше.

1. Как найти величину ускорения из определения ускорения:

Как мы все знаем, ускорение относится к скорости изменения скорости. Если начальная скорость тела равна vi, а его конечная скорость равна vf, ускорение можно вычислить, разделив изменение скорости на временной интервал Δt:

(Здесь величина вектора показана жирным шрифтом, а вертикальные линии обозначают величину вектора или, можно сказать, абсолютное значение вектора, которое всегда положительно.)

Используя скорость и время, приведенное выше уравнение можно использовать для определения величины ускорения.

2. Как определить величину ускорения Из второго закона Ньютона:

Второй закон Ньютона гласит, что сила получается умножением ускорения на массу тела. Итак, как можно определить величину ускорения?

Итак, согласно второму закону Ньютона, сила, действующая на тело, пропорциональна его ускорению, тогда как масса обратно пропорциональна ускорению. Переведем эти утверждения в формулу величины ускорения:

3. Как найти величину ускорения по компонентам вектора ускорения:

Как мы все знаем, ускорение — это векторная величина. Чтобы получить это количество, сложите компоненты ускорения. Здесь можно использовать простое правило сложения векторов. Если задействованы две компоненты вектора, мы можем написать:

В декартовой плоскости мы можем использовать координаты X и Y. Как в этих обстоятельствах определить величину ускорения? В декартовой системе координат компоненты X и Y перпендикулярны друг другу. Величину ускорения можно вычислить, возведя значения в квадрат и затем вычислив квадратный корень из суммы.

В результате уравнение выглядит следующим образом:

Формула величины ускорения в трехмерном пространстве:

4. Как найти величину центростремительного ускорения:

Из-за непрерывного изменения направления при круговом движении скорость изменяется, что приводит к ускорению. Ускорение направлено в направлении центра круга. Возведение в квадрат скорости тела v и деление ее на расстояние тела от центра круга дает величину центростремительного ускорения. Таким образом, центростремительное ускорение:

5. Как найти величину ускорения из уравнений движения:

Уравнения движения — это, по сути, уравнения, которые объясняют движение любой физической системы и демонстрируют взаимосвязь между перемещением объекта, скоростью, ускорением и временем.

Когда величина ускорения постоянна, кинематическое уравнение движения в одном измерении также используется для вычисления величины ускорения.

Ниже приведены уравнения движения:

Когда мы рассматриваем ускорение в уравнении, мы получаем следующее:

    (Это то же самое, что мы получили из определения ускорения.)

Вот как мы можем определить величину ускорения.

Решенные примеры определения величины ускорения:

1 задачи:

Автомобиль трогается с места и развивает скорость 54 км / ч за 3 секунды. Найти его ускорение?

Решение: Автомобиль заводится с отдыха. Таким образом, начальная скорость автомобиля

Таким образом, Ускорение : a = (Vf — Vi) / Δt

2 задачи:

Определите ускорения, возникающие при приложении чистой силы 12 Н к объекту массой 3 кг, а затем к объекту массой 6 кг.

Решение: Приложенная сила F = 12 Н

Масса объекта m1 = 3 кг

Ускорение объекта массой 3 кг

Ускорение объекта массой 6 кг

Поскольку масса и ускорение обратно пропорциональны, мы можем наблюдать, что по мере увеличения массы ускорение уменьшается.

3 задачи:

Тело движется по оси абсцисс в соответствии с соотношением

, где x в метрах, а t в секундах. Найти ускорение тела при t = 3 с.

Решение: Вот :

Скорость v = dX / dt

Ускорение : a = dv / dt

Как мы видим, для этого движения ускорение не зависит от времени; ускорение будет постоянным на протяжении всего движения, а величина ускорения будет .

4 задачи:

Рассчитайте центростремительное ускорение точки на расстоянии 7.50 см от оси ультрацентрифуги, вращающейся при число оборотов в минуту.

Решение: Здесь нам даны:

Расстояние от центра r = 7.5 см

Таким образом, центростремительное ускорение:

Последние выпуски в области передовой науки и исследований

Физика. Ускорение, масса, сила

Ускорение это изменение скорости в единицу времени.
a = V / t
Ускорение в физике это не основная физическая величина, а производная.
Преобразуем: V = S / t тогда : a = S / t 2
именно это дает запись формулы ускорения в основных величинах и единицу измерения ускорения : метры на секунды в квадрате.

Таким образом: ускорение есть там, где есть линейная скорость движения и эта скорость — меняется в числовом значении.
Но у скорости есть еще направление.
И физики не смогли это дело оставить так, чтобы не запутать и сказали: раз скорость векторная величина, пусть будет так, что ускорение возникает и при изменении направления.
Так ускорение появляется при равномерном круговом движении?
Для нас ясность тут очень важна, так как это траектория движения планет.
Как так, спрашиваем мы, скорость движения постоянна, а появилось ускорение?
Это же нонсенс!

Предлагается:1. чтобы исключить двойное толкование, принять ускорение, как только изменение линейной скорости в единицу времени.
Далее»
2.Основным написанием формулы ускорения считать a = S / t 2,
а написание a = V / t — производным. И еще точнее, чтобы убрать квадратную функцию времени (чего не существует) a = S1- S2 / t. Т.е. ускорение это разница (изменение) пройденного пути в единицу времени. И всё!

3. Считать ускорение не физической, а математической величиной, употребимой в узких пределах.
4. Определение «изменение направления» к ускорению не применять. Считать ускорением только изменение величины, а не направления.

Где мы в формулах встречаем ускорение?
Формула силы. По второму закону Ньютона F = m х a означает, что, если к массе m приложить силу F , то тело будет двигаться с скоростью, которая имеет ускорение а. И чтобы вычислить ускорение, нам надо замерить путь и время, так зачем же оно? Только для облегчения записи вычислений.
Ускорение со знаком плюс означает только то, что за одну единицу времени тело будет проходить все более меньший путь.
В случае со свободным падением тела используется понятие ускорение свободного падения тела (без учета сопротивления воздуха) g

И формула пишется F = m х g. Но эта формула справедлива только для случая, когда есть состояние свободного падения. Если тело неподвижно относительно центра Земли, то эта формула не используется, так как приводит к ошибке.
Например. Тело массой m (1 кг.) лежит на весах.
Что показывают весы? Они показывают массу в 1 кг.
А не вес, как силу притяжения ( m х g).
Тело давит на опору весов, с силой притяжения, а по Закону Всемирного тяготения
сила тяжести m х M / R2 ускорения свободного падения не содержит и вес показывают только массу. Таким образом, если задать задачу: арбуз массой m положили на весы и спросили какой вес? А потом перемножить m х g получим неверный результат, потому что весы показывают значение массы, а ускорения g
здесь вообще нет.

Напишите такое уравнение:

m х g = m х M / R2 и получите, после сокращения массы g = M / R2
и эта формула хороша только тем, что объясняет почему ускорение свободного падения не зависит от массы тела , а зависит только от массы Земли и радиуса в квадрате.

Но математически эта формула выглядит как неверная, так как не совпадают единицы измерения.
Наши ученые тут опять отличились. Они ввели гравитационную постоянную и G дали ей единицу измерения м3·с;2·кг;1 (ответ сошелся) а вопрос остался:
Есть от чего сойти с ума : во втором законе ускорение от массы зависит, а при свободном падении — нет!
А происходит это от того, что при увеличении массы силя притяжения растет, а ускорение по второму закону уменьшается и результирующая остается неизменной от массы.

Вообще, вес это еще одна производная от действия гравитации величина, которая в уважающих себя учебниках физики не рассматривается, но очень важна на базаре.

Рассмотрим случай невесомости, когда вес исчезает. Например, парашютист прыгает
с самолета, а парашют дома забыл. (сопротивление воздуха не учитываем, как всегда, зачем ему теперь воздух нужен) Скорость растет соразмерно с величиной 9.8 метров пройденного пути в секунду!
И здесь появляется еще один парадокс: сила гравитации есть, масса есть, ускорение. тоже есть, а давления на опору (как рыночного понятия веса) нет!

А, если есть сопротивление воздуха?
Тогда: F = m х (g — а)
Здесь а это то реальное ускорение, которое возникает и оно меньше ускорения свободного падения. И, если оно равно g — сила давление опору ( или вес ) равен нулю.

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.


источники:

http://proza.ru/2015/09/27/1494

http://artsybashev.ru/zadachki-s-resheniem/vektor-skorosti-i-uskoreniya-materialnoi-tochki/