Как называется дифференциальное уравнение с разделяющимися переменными

Дифференциальные уравнения с разделяющимися переменными и их интегрирование

п.1. Понятие дифференциального уравнения с разделяющимися переменными

Например:
\(y»+y’-4=5cos⁡x\) — ДУ второго порядка первой степени
\((y’)^3+5y^2=19\) – ДУ первого порядка третьей степени
\(\sqrt=y’x\) — ДУ первого порядка первой степени

Самыми простыми для решения будут такие уравнения, у которых можно разделить переменные, т.е. собрать всё, что связано с функцией \(y\), по одну сторону знака равенства, и всё, что связано с независимой переменной \(x\), — по другую сторону.

Например:
Уравнение \(\sqrt=y’x\) является уравнением с разделяющимися переменными, т.к. $$ y’=\frac<\sqrt>=g(x)\cdot h(y),\ \ \text<где>\ g(x)=\frac1x,\ h(y)=\sqrt $$

Алгоритм решения ДУ с разделяющимися переменными
На входе: уравнение первого порядка \(y’=f(x,y)\), для которого \(f(x,y)=g(x)\cdot h(y)\)
Шаг 1. Записать производную в форме Лейбница \(y’=\frac\)
Шаг 2. Преобразовать уравнение
$$ \frac=g(x)\cdot h(y)\Rightarrow \frac=g(x)dx $$ Шаг 3. Проинтегрировать левую и правую части уравнения: $$ \int\frac=\int g(x)dx+C $$ Шаг 4. Результат интегрирования \(H(y)=G(x)+C\) — общее решение данного уравнения.
На выходе: выражение \(H(y)=G(x)+C\)

Например:
Решим уравнение \(\sqrt=y’x\)
1) Пусть \(x\ne 0\). Тогда: $$ y’=\frac<\sqrt>\Rightarrow\frac=\frac<\sqrt>\Rightarrow\frac<\sqrt>=\frac $$ Находим интегралы (константу запишем в конце): $$ \int\frac<\sqrt>=\frac<(y+1)^<\frac32>><\frac32>=\frac23\sqrt<(y+1)^3>,\ \ \int\frac=\ln|x| $$ Получаем общее решение: $$ \frac23\sqrt<(y+1)^3>=\ln|x|+C,\ x\ne 0 $$ 2) Пусть \(x=0\). Тогда по условию: \(\sqrt=0\Rightarrow y=-1\)
Точка (0;-1) – особое решение данного уравнения.

п.2. Задача Коши

Например:
Найдем решение задачи Коши для уравнения \(\sqrt=y’x\) при начальном условии \(y(1)=3\).
Общее решение нами уже найдено: \(\frac23\sqrt<(y+1)^3>=\ln|x|+C\) — этим выражением задано бесконечное множество кривых. Решить задачу Коши означает найти единственную кривую, проходящую через точку (1;3), т.е. конкретное значение C для заданных начальных условий.
Подставляем \(x=1\) и \(y=3:\frac23\sqrt<(3+1)^3>=\underbrace<\ln 1>_<=0>+C\Rightarrow C=\frac23\sqrt<4^3>=\frac<16><3>\)
Решение задачи Коши: \(\frac23\sqrt<(y+1)^3>=\ln|x|+\frac<16><3>\)
Выразим y в явном виде, что всегда приходится делать на практике: $$ \sqrt<(y+1)^3>=\frac32\ln|x|+8\Rightarrow y+1=\left(\frac32\ln|x|+8\right)^<\frac23>\Rightarrow y=\left(\frac32\ln|x|+8\right)^<\frac23>-1 $$ Ограничения ОДЗ: \( \begin y\geq -1\\ \frac32\ln|x|+8\geq 0 \end \Rightarrow |x|\geq -\frac<16><3>\Rightarrow |x|\geq e^<-\frac<16><3>> \)
Начальная точка \(x=1\gt e^<-\frac<16><3>>\), требования ОДЗ выполняются.
Т.к. \(x=1\gt 0\) в решении также можно убрать модуль.

п.3. Закон радиоактивного распада

В многочисленных экспериментах по определению радиоактивности вещества был установлен следующий факт:

Число распадов ΔN, которые произошли за интервал времени Δt, пропорционально числу атомов N в образце.

Перейдем к бесконечно малым \(dN\) и \(dt\) и запишем соответствующее этому факту дифференциальное уравнение: $$ \frac

=-\lambda N $$ где знак «-» учитывает уменьшение числа атомов N со временем.
Полученное ДУ является уравнением с разделяющимися переменными.
Найдем его общее решение: $$ \frac=-\lambda dt\Rightarrow\int\frac=-\lambda\int dt\Rightarrow \ln N=-\lambda t+C $$ Пусть в начальный момент времени \(t=0\) в образце было \(N_0\) атомов.
Решаем задачу Коши, находим \(C:\ \ln N_0=-\lambda\cdot 0+C\Rightarrow C=\ln N_0\)
Подставляем найденное C в общее решение. Получаем: $$ \ln N=-\lambda N+\ln N_0\Rightarrow \ln N-\ln N_0=-\lambda t\Rightarrow\ln\frac=-\lambda t\Rightarrow\frac=e^ <-\lambda t>$$

п.4. Зарядка конденсатора

Соберем цепь, состоящую из конденсатора C, резистора R, источника ЭДС E и ключа K.
Пусть в начальный момент времени конденсатор разряжен, напряжение на обкладках: \(U(0)=0\)
Замкнем ключ и начнем зарядку конденсатора.

По закону Ома для замкнутой цепи можем записать: $$ I(R+r_0)+U=\varepsilon $$ где \(I\) — ток в цепи, \(I(R+r_0)\) – падение напряжения на резисторе и источнике, \(U\) — напряжение на конденсаторе, \(\varepsilon\) – ЭДС источника.
Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ C\frac
\cdot (R+r_0)=\varepsilon-U $$ Получили ДУ с разделяющимися переменными: $$ \frac<\varepsilon-U>=\frac
$$ Интегрируем (не забываем про минус перед U в знаменателе): $$ \int\frac<\varepsilon-U>=-\ln(\varepsilon-U),\ \ \int\frac = \frac $$ Общее решение: $$ \ln(\varepsilon-U)=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln(\varepsilon-0)=-\frac<0>+B\Rightarrow B=\ln\varepsilon $$ Решение задачи Коши: \begin \ln(\varepsilon-U)=-\frac+\ln\varepsilon\\ \ln(\varepsilon-U)-\ln\varepsilon=-\frac\\ \ln\frac<\varepsilon-U><\varepsilon>=-\frac\Rightarrow\frac<\varepsilon-U><\varepsilon>=e^<-\frac>\Rightarrow \varepsilon e^<-\frac> \end

Если внутренне сопротивление источника пренебрежимо мало по сравнению с внешним сопротивлением, \(r_0\lt\lt R\), то получаем: $$ u(t)=\varepsilon\left(1-e^<-\frac>\right) $$ При \(t\rightarrow +\infty\) показатель экспоненты стремится к (\(-\infty\)), а сама экспонента стремится к нулю: \(U(t\rightarrow +\infty)=\varepsilon(1-e^<-\infty>)\), т.е. напряжение на обкладках конденсатора стремится к значению ЭДС источника.

Например:
При \(\varepsilon=5В,\ RC=0,01\) с график зарядки конденсатора имеет вид:

п.5. Примеры

Пример 1. Решите уравнение:
a) \(y’=e^\) \begin \frac=e^x\cdot e^y\Rightarrow e^<-y>dy=e^x dx\Rightarrow\int e^<-y>dy=\int e^x dx\Rightarrow -e^<-y>=e^x+C \end \(e^<-y>=-e^x+C\) (на константу, определенную от минус до плюс бесконечности, перемена знака не влияет).
\(-y=\ln⁡(-e^x+C) \)
\(y=-\ln⁡(C-e^x)\)
Ответ: \(y=\ln⁡(C-e^x)\)

б) \(xy+(x+1)y’=0\) \begin (x+1)y’=-xy\Rightarrow\frac=-\frac\Rightarrow\frac=-\fracdx\\ \int\frac=\ln|y|\\ -\int\fracdx=-\int\frac<(x+1)-1>dx=-\int\left(1-\frac<1>\right)dx=-x+\ln|x+1| \end Получаем: \(\ln|y|=-x+\ln|x+1|\)
Запишем константу немного по-другому, как \(\ln ⁡C\). Это удобно для потенцирования: \begin \ln|y|-x+\ln|x+1|+\ln C\\ \ln|y|-\ln C=-x+\ln|x+1|\\ \ln\frac<|y|>=-x+\ln|x+1|\\ e^<\ln\frac<|y|>>=e^<-x+\ln|x+1|>\\ \frac yC=e^<-x>\cdot (x+1)\\ y=Ce^<-x>(x+1) \end При преобразованиях мы делили на \((x+1)\) и \(y\), считая, что \(x\ne -1\) и \(y\ne 0\). Если подставить \(x=-1\) в решение, получим \(y=0\), т.е. эта точка не является особой, она входит в общее решение.
Ответ: \(y=Ce^<-x>(x+1)\)

Пример 2*. Найдите решение задачи Коши:
a) \(\frac+e^y=0,\ y(1)=0\) \begin \frac=-e^y\Rightarrow\frac=-x^2e^y\Rightarrow e^<-y>dy=-x^2dx\\ \int e^<-y>dy=-e^<-y>,\ \ -\int x^2dx=-\frac <3>\end Получаем: \begin -e^<-y>=-\frac<3>+C\Rightarrow e^<-y>=\frac<3>+C\Rightarrow -y=\ln\left|\frac<3>+C\right|\Rightarrow y=-\ln\left|\frac<3>+C\right| \end Общее решение: \(y=-\ln\left|\frac<3>+C\right|\)
Решаем задачу Коши. Подставляем начальные условия: $$ 0-\ln\left|\frac13+C\right|\Rightarrow\frac13+C=1\Rightarrow C=\frac23 $$ Решение задачи Коши: \(y=-\ln\left|\frac<3>\right|\)
Ответ: \(y=-\ln\left|\frac<3>\right|\)

б) \(x^2(y^2+5)+y^2(x^2+r)y’=0,\ y(0)=\sqrt<5>\) \begin y^2(x^2+5)y’=-x^2(y^2+5)\\ y’=\frac=-\frac\Rightarrow \fracdy=-\fracdx \end Используем табличный интеграл: \(\int\frac=\frac1a arctg\frac xa+C\) \begin \int\fracdy=\int\frac<(y^2+5)-5>dy=\int\left(1-\frac<5>\right)dy=y-5\cdot\frac<1><\sqrt<5>>arctg\frac<\sqrt<5>>=\\ =y-\sqrt<5>arctg\frac<\sqrt<5>> \end Аналогично: \(-\int\fracdx=-x+\sqrt<5>arctg\frac<\sqrt<5>>\)
Общее решение: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+C\)
Решаем задачу Коши. Подставляем начальные условия: $$ \sqrt<5>-\sqrt<5>arctg1=-0+0+C\Rightarrow C=\sqrt<5>-\frac<\pi\sqrt<5>><4>=\sqrt<5>\left(1-\frac\pi 4\right) $$ Решение задачи Коши: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)
Ответ: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)

Пример 3. Найдите массу радиоактивного вещества спустя время, равное четырем периодам полураспада, если начальная масса составляла 64 г.
При радиоактивном распаде атомы одного элемента превращаются в атомы другого, поэтому для массы вещества справедлив тот же закон, что и для количества атомов этого вещества: $$ m(t)=m_0 e^ <-\lambda t>$$ Период полураспада – это время, за которое масса уменьшается в 2 раза: $$ \frac\right)>=\frac12 $$ За время, равное 4 периодам полураспада, масса уменьшится: $$ \frac\right)>=\left(\frac12\right)^4=\frac<1> <16>$$ в 16 раз.
Получаем: $$ m\left(4T_<\frac12>\right)=\frac<16>,\ \ m\left(4T_<\frac12>\right)=\frac<64><16>=4\ \text <(г)>$$ Ответ: 4 г

Пример 4. Выведите зависимость \(U(t)\) на обкладках конденсатора при его разрядке в RC-цепи.

Разрядка конденсатора происходит в цепи без источника ЭДС.
Пусть в начальный момент заряд на обкладках \(U(0)=U_0.\)
Замкнем ключ и начнем разрядку конденсатора.

По закону Ома для замкнутой цепи: $$ IR+U=0 $$ Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ RC\frac
=-U $$ Получили ДУ с разделяющимися переменными: $$ \frac=-\frac
$$ Интегрируем: $$ \int\frac=\ln U,\ \ \int
=\frac $$ Общее решение: $$ \ln U=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln U_0=-\frac<0>+B\Rightarrow B=\ln U_0 $$ Решение задачи Коши: \begin \ln U=-\frac+\ln U_0\Rightarrow\ln U-\ln U_0=-\frac\Rightarrow \ln\frac=-\frac\\ \frac=e^<-\frac> \end
Изменение напряжение на обкладках конденсатора при разрядке: $$ U(t)=U_0 e^<-\frac> $$

Например, \(при U_0=5В,\ RC=0,01 с\) график разрядки конденсатора имеет вид:

Дифференциальные уравнения с разделяющимися переменными

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = — cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = — cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = — cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = — 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 — C 1 )

Общим решением данного ДУ является функция y = — 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = — cos x + C 2 , или y = — 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 — C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z — a x ) ⇒ y ‘ = 1 b ( z ‘ — a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ — a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) — 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z — 2 x ⇒ y ‘ = z ‘ — 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) — 2 ⇔ z ‘ — 2 = 1 ln z — 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z — ∫ z d z z = = z · ln z — z + C 1 = z · ( ln z — 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z — 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 — C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) — 1 ) = 0 + C e · ( ln e — 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z — x · z ‘ z 2 = z — x · z ‘ z 2

В этом случае уравнения примут вид z — x · z ‘ z 2 = f ( z ) или z — x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x — y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x — y x + y x ⇔ z + x z ‘ = 1 e z — z + z ⇔ x · d z d x = 1 e z — z ⇔ ( e z — z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z — z ) d z = ∫ d x x e z — z 2 2 + C 1 = ln x + C 2 e z — z 2 2 = ln x + C , C = C 2 — C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x — 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n — 1 x + a 2 y n — 2 x 2 + . . . + a n x n b 0 y n + b 1 y n — 1 x + b 2 y n — 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 — x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 — x 2 2 x y ⇒ y ‘ = y 2 x 2 — 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 — 1 2 y x ⇔ z ‘ x + z = z 2 — 1 2 z ⇔ z ‘ x = z 2 — 1 2 z — z ⇔ z ‘ x = z 2 — 1 — 2 z 2 2 z ⇔ d z d x x = — z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = — d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = — ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 — ∫ d x x = — ln x + C 2 ⇒ ln z 2 + 1 + C 1 = — ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем — ln C = C 2 — C 1 и применим свойства логарифма:

ln z 2 + 1 = — ln x + C 2 — C 1 ⇔ ln z 2 + 1 = — ln x — ln C ⇔ ln z 2 + 1 = — ln C x ⇔ ln z 2 + 1 = ln C x — 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x — 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x — 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 — x 2 2 x y ⇔ y ‘ = 1 — x 2 y 2 2 x y

Тогда y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z — z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z — z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z — 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z — 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 — C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x — 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) — решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x — x 0 v = y — y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y — 3 x — 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y — 3 = 0 x — 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x — 1 v = y — 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y — 3 x — 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 — C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u — 1 ⇔ v u = C · u — 1 ⇔ v = u · ( C · u — 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x — 1 v = y — 1 :
v = u · ( C · u — 1 ) ⇔ y — 1 = ( x — 1 ) · ( C · ( x — 1 ) — 1 ) ⇔ y = C x 2 — ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только в левую часть, а выражение, зависящее от x — только в правую часть, это дифференциальные уравнения с разделяющимися переменными, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения. Пример такого уравнения — .

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения следует проинтегрировать обе части уравнения. Пример такого уравнения — .

Пример 1. Найти общее решение дифференциального уравнения

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Таким образом, получили функцию — решение данного уравнения.

Пример 2. Найти общее решение дифференциального уравнения

Решение. Интегрируем обе части уравнения:

.

Функция — решение уравнения — получена. Как видим, нужно только уверенно знать табличные интегралы и неплохо расправляться с дробями и корнями.

Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные, имеют вид

.

В таком уравнении и — функции только переменной x, а и — функции только переменной y.

Поделив члены уравнения на произведение , после сокращения получим

.

Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть переменные разделены.

Левая часть полученного уравнения — дифференциал некоторой функции переменной x, а правая часть — дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член в правую часть, можно почленно интегрировать без такого переноса.

Пример 3. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на произведение и получим

.

,

или ,

поскольку левая часть равенства есть сумма арифметических значений корней. Таким образом, получили общий интеграл данного уравнения. Выразим из него y и найдём общее решение уравнения:

.

Есть задачи, в которых для разделения переменных уравнение нужно не делить почленно на произведение некоторых функций, а почленно умножать. Таков следующий пример.

Пример 4. Найти общее решение дифференциального уравнения

.

Решение. Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения, задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как , то перепишем данное уравнение в виде

.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение , получаем

.

Первый интеграл находим интегрированием по частям, а второй — табличный. Следовательно,

.

Логарифимруя обе части равенства, получаем общее решение уравнения:

.

Решить примеры самостоятельно, а затем посмотреть правильные решения

Пример 5. Найти общее решение диффференциального уравнения

.

Пример 6. Найти общее решение диффференциального уравнения

.

Продолжаем решать примеры вместе

Пример 7. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим

.

Чтобы найти y, требуется найти интеграл. Интегрируем по частям.

Пусть , .

Тогда , .

Находим общее решение уравнения:

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Записываем производную y в виде и получаем

Разделяем dy и dx и получаем уравнение:

, которое почленно интегрируя:

,

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

В некоторых случаях ответ (функцию) можно выразить явно. Для этого следует воспользоваться тем свойством логарифма, что сумма логарифмов равна логарифму произведения логарифмируемых выражений. Обычно это следует делать в тех случаях, когда слева искомая функция под логарифмом находится вместе с каким-нибудь слагаемым. Рассмотрим два таких примера.

Пример 9. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных запишем производную «игрека» в виде и получим

.

Разделяем «игреки» и «иксы»:

.

Почленно интегрируем и, так как в левой части «игрек» присутствует со слагаемым, в правой части константу интегрирования записываем также под знаком логарифма:

.

Теперь по свойству логарифма имеем

.

Находим общее решение уравнения:

Пример 10. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Разделяем dy и dx и получаем уравнение:


которое почленно интегрируя:

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

Выводы. В дифференциальных уравнениях с разделяющимися переменными, как в тех, в которых переменные уже разделены, так и в тех, где переменные требуется разделить, существуют однозначные способы решения, на основе которых может быть построен простой алгоритм. Если недостаточно уверенно освоен материал по нахождению производной и решению интегралов, то требуется его повторить. Во многих задачах на путь к решению уравнения наводят знания и приёмы из элементарной (школьной) математики.


источники:

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/differentsialnye-uravnenija-s-razdeljajuschimisja/

http://function-x.ru/differential_equations2.html