Как называют уравнения в которых указано количество теплоты

Количество теплоты. Уравнение теплового баланса

Количество теплоты – это количественная мера изменения внутренней энергии тела при теплообмене. Единица измерения – джоуль (Дж). Количество теплоты при нагревании или охлаждении можно рассчитать по формуле:

Q = cm∙DT(6)

где Q – количество теплоты; сm – мольная теплоемкость вещества Дж/(К·моль) или кал/(моль∙град); – изменение температуры.

Коэффициент пропорциональности между количеством сообщенной телу теплоты и изменением его температуры называется теплоемкостью:
Q = С∙ΔТ; С = Q/ΔТ.

Мольной теплоемкостью cm называется количество тепла, которое необходимо сообщить одному молю вещества для того, чтобы увеличить его температуру на один градус Кельвина. Удельной теплоемкостью называется количество тепла, необходимое для увеличения температуры одного килограмма вещества на один градус Кельвина.

При нагревании тело получает энергию; при охлаждении – выделяет, так как DT = T1 – T2

QP,T = ΔH = H2 – H1,(10)

где Н2 – энтальпия продуктов реакции; Н1 – энтальпия исходных веществ.

Измерение тепловых эффектов реакций составляет обширную область термохимии, данные которой позволяют составить правильное представление об энергетической ценности той или иной реакции, ее внутреннем механизме, возможном направлении кинетики и т.д. Для практических измерений тепловых эффектов употребляются калориметры.

Результаты термохимических измерений – тепловые эффекты реакций – принято относить к одному молю образующегося вещества. Количество теплоты, которое выделяется при образовании 1 моля соединения из простых веществ, называется теплотой образования данного соединения. Например, выражение «теплота образования воды равна 285,8 кДж/моль» означает, что при образовании 18 г жидкой воды из 2 г водорода и 16 г кислорода выделяется 285,8 кДж.

Если элемент может существовать в виде нескольких простых веществ, то при расчете теплоты образования этот элемент берется в виде того простого вещества, которое при данных условиях наиболее устойчиво. Теплоты образования наиболее устойчивых простых веществ принимаются равными нулю. Например, при обычных условиях наиболее устойчивой формой кислорода является молекулярный кислород О2, теплота образования которого считается равной нулю. Теплота же образования озона О3 равна -142 кДж/моль, поскольку при образовании из молекулярного кислорода одного моля озона поглощается 142 кДж.

Тепловые эффекты можно включать в уравнения реакций. Химические уравнения, в которых указано количество выделяющейся или поглощаемой теплоты, называются термохимическими уравнениями. Величина теплового эффекта указывается обычно в правой части уравнения со знаком «+» в случае экзотермической реакции и со знаком «-» в случае эндотермической реакции.

Например, термохимическое уравнение реакции образования жидкой воды имеет вид

Возможна и другая запись термохимических уравнений, в которой величина теплового эффекта указана в виде изменения энтальпии ∆H. Часто изменение энтальпии записывается как ∆H 0 298. Верхний индекс 0 означает стандартную величину теплового эффекта реакции, а нижний температуру, при которой идет взаимодействие. В реакциях, идущих с выделением теплоты (экзотермических), энтальпия системы уменьшается (∆H 0).

Ниже приведен пример записи термохимического уравнения с учетом вышесказанного:

Данная запись означает, что реакция образования оксида азота (II) идет с поглощением теплоты (эндотермическая).

Обе формы записи правильны и возможно использование любой из них.

Важнейшей характеристикой веществ, применяемых в качестве топлива, является их теплота сгорания. Эту величину также принято относить к одному молю вещества. Таким образом, выражение «теплота сгорания ацетилена равна 1300 кДж/моль» эквивалентно термохимическому уравнению

Величина теплового эффекта зависит от природы исходных веществ и продуктов реакции, их агрегатного состояния и температуры. Для удобства сравнения различных реакций по величинам их тепловых эффектов последние обычно указывают для случая, когда температура исходных веществ и продуктов реакции равна 25 0 С[1].

При этом также подразумевается, что участвующие в реакции вещества находятся в том агрегатном состоянии, которое устойчиво при 25 0 С (стандартной температуре). Агрегатное состояние вещества указывается в уравнении реакции: для обозначения кристаллического состояния используется знак (к) около формулы вещества, жидкого – (ж), газообразного – (г).

Изменение давления, концентрации веществ и температуры приводит к смещению равновесия в ту или иную сторону. Направление смещения определяется известным принципом Ле-Шателье: при воздействии на систему, находящуюся в равновесии, равновесие смещается в сторону той из двух противоположных реакций (прямой или обратной), которая ослабляет эффект внешнего воздействия. Остановимся подробнее на влиянии температуры.

Реакция между кислородом и водородом сопровождается выделением тепла (уменьшением энтальпии)

2 + О2 = 2Н2О + Q (DH [ Н2О]2, [H2]1 0®увеличениеуменьшениеЭкзотермическая+QDH 0 298 = ∆H 0 298 обр.(NaOH) – [½∆H 0 298 обр.(Na2O) + ½∆H 0 298 обр.(H2O)].

Подставив в это выражение значения стандартных энтальпий образования веществ с учётом их агрегатных состояний, получим для NaOH

∆H 0 298 = -426,60 + 215,30 + 142,92 = -68,38 кДж/моль

Термохимическое уравнение реакции следует записать так:

или так: ½Na2O(к) + ½Н2O(ж) = NaOH(к) + 68,38 кДж/моль.

Пример 3.Стандартный тепловой эффект реакции 2А + В = 2С равен 150 кДж/моль В. Рассчитать стандартную теплоту (энтальпию) образования вещества А, если ∆H 0 298 обр.(В) = –45,0 кДж/моль и ∆H 0 298 обр.(С) = –60 кДж/моль.

На основании следствия из закона Гесса (6) для рассматриваемой реакции имеем:

Подставив в это выражение приведенные в условии задачи значения ∆H, определим величину ∆H 0 298 обр. A:

∆H 0 298 обр. A = ½ (-150-120+45) = — 112,5 кДж/моль.

Пример 4.При восстановлении 12,7 г оксида меди (II) углем (с образованием СО) поглощается 8, 24 кДж. Определить ∆H 0 298 обр CuO.

Согласно следствию закона Гесса имеем:

Произведем пересчет теплового эффекта восстановления 1 моль оксида меди:

при сгорании 12,7 г СuO поглощается 8,24 кДж

при сгорании 79,5 г СuO поглотится Х кДж

Решая эту пропорцию, получим Х = 51, 58 кДж

(Молярная масса оксида меди (II) М = 79,5 г/моль)

Произведем подстановку полученного значения в выражение для нахождения ∆H 0 298 обр CuO:

∆H 0 298 обр CuO = -51,58 – 110,5 = -162,1 кДж.

Пример 5.Вычислить тепловой эффект реакции сгорания метана СН4, зная теплоты образования метана (74,9 кДж/моль) и продуктов его сгорания – диоксида углерода (393,5 кДж/моль) и воды (285,8 кДж/моль).

Для вычисления запишем реакцию горения метана сначала непосредственно, а затем разбив на стадии. Соответствующие термохимические уравнения будут иметь вид:

Складывая последние три термохимические уравнения, отвечающие проведению реакции по стадиям, получим суммарное уравнение горения метана:

Согласно закону Гесса, — 74,9 + 393,5 + 571,6 = х, откуда теплота сгорания метана х = 890,2 кДж.

Закон Кирхгофа

В термодинамических таблицах содержатся стандартные энтальпии (изобарные тепловые эффекты, изобарные теплоты) образования химических соединений из простых веществ при 25°С. При температурах, отличных от 25°С, тепловые эффекты в общем случае будут иными. Причем для различных реакций влияние температуры на тепловой эффект неодинаково. Только в одном случае, когда суммы теплоёмкостей исходных веществ и продуктов реакции равны, температура не влияет на тепловой эффект реакции. Чем сильнее отличаются теплоёмкости исходных веществ от теплоёмкостей продуктов, тем сильнее сказывается влияние температуры на тепловой эффект реакции.

Зависимость теплот химических реакций от температуры была изучена Кирхгофом. Эта зависимость выражается уравнением

, (12)

где ∆С – разность сумм теплоемкостей продуктов реакции и исходных веществ, взятых с учетом стехиометрических коэффициентов.

Так как чаще всего процессы протекают при постоянном давлении, то обычно применяют уравнение (7), в котором Qp = ∆H и ∆С = ∆Сp. В этом случае интегрирование уравнения (7) дает известное уравнение Кирхгофа

∆H 0 Т = ∆H 0 298 + , (13)

где ∆H 0 298 – стандартный тепловой эффект реакции при Т=298 К; ∆H 0 Т – стандартный тепловой эффект реакции при температуре Т; ΔСр – разность мольных изобарных теплоёмкостей всех продуктов реакции и мольных изобарных теплоёмкостей всех исходных веществ.

Закон Кирхгофа можно сформулировать так: изменение энтальпии в реакции при температуре Т2 равно изменению ее при температуре Т1 плюс разность мольных теплоемкостей продуктов реакции и исходных веществ, умноженная на изменение температуры.

Расчеты по уравнению Кирхгофа показывают, что в том интервале температур, который может иметь практическое значение, изменение величины теплового эффекта реакции невелико. Так, например, тепловой эффект реакции

протекающей при р = 101 кПа, меняется с температурой следующим образом:

Т1=298 К; ∆H 0 298 = — 156,9 кДж/моль;

Т2=500 К; ∆H 0 298 = — 155, 5 кДж/моль;

Т3=1000 К; ∆H 0 298 = — 149, 5 кДж/моль.

Тепловой эффект процесса ½ N2 + ½ O2 = NO (г) при повышении температуры от 298 до 4000 К изменяется на 2,0 кДж/моль. Еще меньше влияние давления на тепловой эффект реакции. Так, для реакции синтеза аммиака из азота и водорода (все реагенты — газы) различие между величинами ∆HТ при р=101 кПа и р=50 МПа не превышает 5%. Поэтому при выполнении термохимических расчетов, допуская обычно незначительную ошибку, можно пользоваться стандартными значениями теплот образования даже тогда, когда условия протекания процесса отличаются от стандартных.

Как называют уравнения в которых указано количество теплоты

«Физика — 10 класс»

В каких процессах происходят агрегатные превращения вещества?
Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его.
Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом.

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты.

Молекулярная картина теплообмена.

При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.

Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t1 до температуры t2 необходимо передать ему количество теплоты:

При остывании тела его конечная температура t2 оказывается меньше начальной температуры t1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость — это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.

Удельная теплота парообразования.

Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования.

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: rН20 = 2,256 • 10 6 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3—10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления.

При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 • 10 5 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Количество теплоты, выделяемой при кристаллизации тела, равно:

Уравнение теплового баланса.

Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты — положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Уравнение (13.10) называется уравнением теплового баланса.

Здесь Q1, Q2, Q3 — количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)—(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Фазовые переходы и уравнение теплового баланса

теория по физике 🧲 термодинамика

Фазовые переходы — это термодинамические процессы, приводящие к изменению агрегатного состояния вещества.

Плавление и отвердевание

Для расчета количества теплоты, необходимого для процесса плавления, следует применять формулу:

m — масса вещества, λ (Дж/кг) — удельная теплота плавления.

Плавление каждого вещества происходит при определенной температуре, которую называют температурой плавления. Все проводимое тепло идет на разрушение кристаллической решетки, при этом увеличивается потенциальная энергия молекул. Кинетическая энергия остается без изменения и температура в процессе плавления не изменяется.

Удельная теплота плавления показывает, какое количество теплоты необходимо сообщить 1 кг данного вещества, чтобы перевести его из твердого состояния в жидкое при условии, что оно уже нагрето до температуры плавления. В процессе отвердевания 1 кг данной жидкости, охлажденной до температуры отвердевания, выделится такое же количество теплоты.

Внимание! Удельная теплота плавления — табличная величина.

Определение Отвердевание, или кристаллизация — переход состояния из жидкого состояния в твердое (это процесс, обратный плавлению).

Отвердевание происходит при той же температуре, что и плавление. В процессе отвердевания температура также не изменяется. Количество теплоты, выделяемое в процессе отвердевания:

Парообразование и конденсация

Количество теплоты, необходимое для процесса кипения, вычисляют по формуле:

m — масса вещества, r (Дж/кг) — удельная теплота парообразования.

Парообразование происходит при определенной температуре, которую называют температурой кипения. В отличие от испарения, процесс парообразования идет со всего объема жидкости. Несмотря на то, что к кипящему веществу подводят тепло, температура не изменяется. Все затраты энергии идут на увеличение промежутком между молекулами. Температура кипения зависит от рода вещества и внешнего атмосферного давления.

Удельная теплота парообразования показывает, какое количество теплоты необходимо затратить, чтобы перевести в пар 1 кг жидкости, нагретой до температуры кипения. Такое же количество теплоты выделится в процессе конденсации 1 кг пара, охлажденного до температуры конденсации.

Внимание! Удельная теплота парообразования — табличная величина.

Определение Конденсация — процесс, обратный кипению. Это переход вещества из газообразного состояния в жидкое.

Конденсация происходит при температуре кипения, которая также не изменяется во время всего процесса. Количество теплоты, выделяемое в процессе конденсации:

Тепловые процессы при нагревании и охлаждении

Все фазовые переходы, а также процессы нагревания и остывания вещества можно отобразить графически. Посмотрите на график фазовых переходов вещества:

Он показывает зависимость температуры вещества от времени в процессе его нагревания и остывания. Опишем процессы, отображаемые на графике, в таблице.

Q = c т m ( t п л − t 0 )

ст — удельная теплоемкость вещества в твердом состоянии.

Q = c ж m ( t к и п − t п л )

сж — удельная теплоемкость вещества в жидком состоянии.

Q = c п m ( t − t к и п )

сп — удельная теплоемкость вещества в газообразном состоянии.

Q = c п m ( t к и п − t )

Q = c ж m ( t п д − t к и п )

Q = c т m ( t 0 − t п л )

Внимание! На участках 2–3 и 9–10 вещество частично находится в жидком и твердом состояниях, а на 4–5 и 7–8 — в жидком и газообразном.

Частные случаи тепловых процессов

ПроцессЧто происходитКоличество выделенной теплоты
1–2Нагревание твердого тела
2–3Плавление при температуре плавления (tпл)
3–4Нагревание жидкости
4–5Кипение при температуре кипения (tкип)
5–6Нагревание пара
6–7Охлаждение пара
7–8Кипение при температуре кипения (tкип)
8–9Охлаждение жидкости
9–10Отвердевание при температуре плавления (tпл)
10–11Охлаждение твердого тела

Q = c л m ( t п л − t л ) + λ m

cл — удельная теплоемкость льда, tл — начальная температура льда.

Q = c л m ( t п л − t л ) + λ m + c в m ( t в − t п л )

cв — удельная теплоемкость воды.

Q = λ m + c в m ( t к и п − t п л ) + r m

Q = c в m ( t к и п − t в ) + r m 2 . .

Подсказки к задачам

Что происходитГрафикФормула количества теплоты
Полностью растопили лед, имеющий отрицательную температуру.
Лед, взятый при отрицательной температуре, превратили в воду при комнатной температуре.
Взяли лед при температуре 0 о С и полностью испарили.
Взяли воду при комнатной температуре и половину превратили в пар.
Единицы измеренияТемпературу можно оставлять в градусах Цельсия, так как изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах.
КипятокВода, которая при нормальном атмосферном давлении имеет температуру в 100 о С.
Объем воды 5 лm = 5 кг, так как:

m = ρ V =10 3 · 5 · 10 − 3 м 3 = 5 к г

Внимание! Равенство V (л) = m (кг) справедливо только для воды.

Пример №1. Какое количество теплоты нужно сообщить льду массой 2 кг, находящемуся при температуре –10 о С, чтобы превратить его в воду и нагреть ее до температуры +30 о С?

Можно выделить три тепловых процесса:

  1. Нагревание льда до температуры плавления.
  2. Плавление льда.
  3. Нагревание воды до указанной температуры.

Поэтому количество теплоты будет равно сумме количеств теплоты для каждого из этих процессов:

Q = Q 1 + Q 2 + Q 3

Q = c л m ( 0 − t 1 ) + λ m + c в m ( t 2 − 0 )

Удельные теплоемкости и удельную теплоту плавления смотрим в таблицах:

  • Удельная теплоемкость льда = 2050 Дж/(кг∙К).
  • Удельная теплоемкость воды = 4200 Дж/(кг∙К).
  • Удельная теплота плавления льда = 333,5∙10 3 Дж/кг.

Q = 2050 · 2 ( 0 − ( − 10 ) ) + 333 , 5 · 10 3 · 2 + 4220 · 2 · 30 = 961200 ( д ж ) = 961 , 2 ( к Д ж )

Уравнение теплового баланса

Суммарное количество теплоты, которое выделяется в теплоизолированной системе равно количеству теплоты (суммарному), которое в этой системе поглощается.

Математически уравнение теплового баланса с учетом знаков количества теплоты записывается так:

Q о т д = − Q п о л

Отданное количество теплоты меньше нуля (Qотд 0).

Подсказки к задачам на уравнение теплового баланса

Теплообмен происходит в калориметреПотерями энергии можно пренебречь.
Жидкость нагревают в некотором сосудеНачальные и конечные температуры жидкости и сосуда совпадают.
В жидкость опускают термометрЧерез некоторое время он покажет конечную температуру жидкости и термометра.
Мокрый снегСодержит воду и лед при 0 о С. Учтите, что лед плавится, если он находится при температуре 0 о С и получает энергию от более нагретого тела. Вода кристаллизируется при температуре 0 о С, если она отдает энергию более холодному телу. Если лед и вода находятся при температуре 0 о С, то никаких агрегатных переходов между ними не происходит.

Частные случаи теплообмена

В воду комнатной температуры бросили ком снега, содержащий некоторое количество воды, после чего установилась некоторая положительная температура. Уравнение теплового баланса:

Q 1 + Q 2 + Q 3 = 0

c в m в 1 ( t − t в 1 ) + c в m в 2 ( t − 0 ) + λ m л + c в m л ( t − 0 ) = 0

Для получения некоторой положительной температуры воды используют горячую воду и лед, имеющий отрицательную температуру. Уравнение теплового баланса:

c в m в ( t − t в ) + c л m л ( 0 − t л ) + λ m л + c в m л ( t − 0 ) = 0

В воду комнатной температуры бросают раскаленное твердое тело, в результате часть воды испаряется. Уравнение теплового баланса:

c т m т ( 100 − t т ) + c в m в ( 100 − t в ) + r m п = 0

Воду комнатной температуры нагревают до кипения, вводя пар при t = 100 о С. Уравнение теплового баланса:

− r m п + c в m в ( 100 − t в ) = 0

Лед, имеющий температуру плавления, нагревают до положительной температуры, вводя пар при t = 100 о С. Уравнение теплового баланса:

− r m п + c в m п ( t − t к и п ) + λ m л + c в m л ( t − t п л ) = 0

Пример №2. В кастрюлю, где находится вода объемом 2 л при температуре 25 о С, долили 3 л кипятка. Какая температура воды установилась?

Количество теплоты, отданное кипятком, равно количеству теплоты, принятому более прохладной водой. Поэтому:

c m 1 ( t − t 0 ) = − c m 2 ( t − t к и п )

m 1 ( t − t 0 ) = − m 2 ( t − t к и п )

m 1 t + m 2 t = m 1 t 0 + m 2 t к и п

( m 1 + m 2 ) t = m 1 t 0 + m 2 t к и п

t = m 1 t 0 + m 2 t к и п m 1 + m 2 . .

t = 2 · 25 + 3 · 100 2 + 3 . . = 350 5 . . = 70 ( ° C )

Взаимные превращения механической и внутренней энергии

Если в тексте задачи указан процент одного вида энергии, перешедший в другой, то он указывается в виде десятичной дроби перед этой энергией, которой тело обладало вначале.

Частные случаи закона сохранения энергии

m v 2 2 . . = c m Δ t

0 , 5 ( m v 2 0 2 . . − m v 2 2 . . ) = c m Δ t

m v 2 2 . . = c m Δ t + λ m

0 , 6 m g h = c m Δ t + r m

q m т о п = m р g h

0 , 25 q m т о п m с v 2 2 . .

Пример №3. Свинцовая дробинка, летящая со скоростью 100 м/с, попадает в доску и входит в нее. 52% кинетической энергии дробинки идет на ее нагревание. На сколько градусов нагрелась дробинка? Удельная теплоемкость свинца 130 Дж/(кг∙К).

Запишем закон сохранения энергии для этого случая:

0 , 52 m v 2 2 . . = c m Δ t

Δ t = 0 , 52 v 2 2 c . . = 0 , 52 · 100 2 2 · 130 . . = 20 ( К )

Примеры КПД

При неупругом ударе о стенку пуля нагрелась
Тело падает с некоторой высоты и в момент падения нагревается
В результате того, что пуля пробивает стену, ее скорость уменьшается, 50% выделившейся при этом энергии идет на нагревание пули
Летящая пуля при ударе о стенку расплавилась. Начальная температура пули меньше температуры плавления
Капля воды, падая с некоторой высоты, в момент удара испарилась. Температура капли у поверхности земли меньше температуры кипения. На нагрев пошло 60% выделившейся механической энергии
Вследствие сгорания топлива ракета поднялась на некоторую высоту
Вследствие сгорания топлива снаряд приобрел некоторую скорость, и на это было затрачено 25% энергии

Q п о л е з н = c m Δ T

Q п о л е з н = c m Δ T + r m

( п р о и з в е д е н и е м о щ н о с т и н а в р е м я )

η = c m Δ T P t . . 100 %

Q п о л е з н = c m Δ T

Q з а т р = q m т о п

η = c m Δ T q m т о п . . 100 %

A п о л е з н = N t = N s v . .

Q з а т р = q m т о п

η = c m Δ T v q m т о п . . 100

E п о л е з н = m v 2 2 . .

Q з а т р = q m п о р

η = m v 2 2 q m п о р . . 100

Внимание! Если в задаче указано время, в течение которого происходит один тепловой процесс, а спрашивают о времени протекания другого, то считайте, что мощность нагревателя или холодильника постоянна:

Q 1 t 1 . . = Q 2 t 2 . .

Пример №4. Для нагревания на электроплитке некоторого количества воды от 20 до 100 о С потребовалась 21 минута. Сколько времени после этого необходимо для полного испарения воды? Удельная теплоемкость воды 4200 Дж (кг∙К), удельная теплота парообразования 2,24 МДж/кг.

Будем считать, что мощность электроплитки постоянна. Поэтому:

Q 1 t 1 . . = Q 2 t 2 . .

Количество теплоты, сообщенное воде при нагревании:

Q 1 = с m ( t 2 − t 1 )

Количество теплоты, которое нужно сообщить, чтобы вода полностью испарилась:

с m ( t 2 − t 1 ) t 1 . . = r m t 2 . .

Кусок льда, имеющий температуру 0°С, помещён в калориметр с электронагревателем. Чтобы превратить этот лёд в воду с температурой 12°С, требуется количество теплоты 80 кДж. Какая температура установится внутри калориметра, если лёд получит от нагревателя количество теплоты 60 кДж? Теплоёмкостью калориметра и теплообменом с внешней средой пренебречь.

Алгоритм решения

Решение

Запишем исходные данные:

Составим уравнение теплового баланса для первого случая:

Q 1 = λ m + c m t 1

Внимание! Вместо разности температур используется значение только конечной температуры, так как начальная температура равна 0.

Найдем массу льда из уравнения теплового баланса для первого случая. Учтем что:

Чтобы расплавить кусок льда массой 0,5 кг, нужно затратить следующее количество теплоты:

Лед не расплавится весь, так как ему будет сообщено лишь 60 кДж теплоты. Поэтому в калориметре температура будет равна 0 о С.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задания и выберите верный ответ из списка

На рисунке представлены графики зависимости температуры t двух тел одинаковой массы от сообщённого им количества теплоты Q. Первоначально тела находились в твёрдом агрегатном состоянии.

Используя данные графиков, выберите из предложенного перечня два верных утверждения и укажите их номера. Ответ: а) Температура плавления первого тела в 1,5 раза больше, чем второго. б) Тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии. в) Удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого. г) Оба тела имеют одинаковую удельную теплоту плавления. д) Тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Алгоритм решения

  1. Проанализировать каждое из утверждений.
  2. Проверить истинность утверждений с помощью графика.
  3. Выбрать и записать верные утверждения.

Решение

Проверим первое утверждение, согласно которому, температура плавления первого тела в 1,5 раза больше, чем второго.

Если это было бы так, то количество клеток до горизонтального участка графика 1 относилось к количеству клеток до горизонтального участка графика 2 как 3 к 2. Но мы видим, что до 1 графика 4 клетки, до 1 — 2. Следовательно, температура плавления первого тела в 2 раза больше, чем второго.

Первое утверждение неверно.

Проверим второе утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков совпадали бы. Только в таком случае температура тел увеличивалась на одну и ту же температуру при получении одного и того же количества теплоты. Но мы видим, что это не так.

Второе утверждение неверно.

Проверим третье утверждение, согласно которому удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого.

Если это было бы так, то первое тело при сообщении телам одинакового количества теплоты нагревалось бы втрое быстрее второго. И это действительно так, потому что температура второго во время нагревания в твердом состоянии увеличилась только на 1 клетку, в то время как температура первого тела — на 2 клетки.

Третье утверждение верно.

Проверим четвертое утверждение, согласно которому оба тела имеют одинаковую удельную теплоту плавления.

Если это было бы так, то протяженность горизонтальных участков обоих графиков была бы одинаковой. Но это не так. Протяженность этого участка для тела 1 составляет 3 клетки, для тела 2 — 2 клетки.

Четвертое утверждение верно.

Проверим пятое утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков были параллельными. Только при таком условии при повышении температуры на одно и то же количество градусов тела бы получли одинаковое количество теплоты. И это действительно так.

Пятое утверждение верно.

Вывод: верным утверждения «в» и «д».

pазбирался: Алиса Никитина | обсудить разбор | оценить

В сосуде лежит кусок льда. Температура льда t 1 = 0 «> t 1 = 0 °C. Если сообщить ему количество теплоты Q = 50 «> Q = 50 кДж, то 3/4 льда растает. Какое количество теплоты q надо после этого сообщить содержимому сосуда дополнительно, чтобы весь лёд растаял и образовавшаяся вода нагрелась до температуры t 2 = 20 «> t 2 = 20 °C? Тепловыми потерями на нагрев сосуда пренебречь.


источники:

http://class-fizika.ru/10_a184.html

http://spadilo.ru/fazovye-perexody-i-uravnenie-teplovogo-balansa/

УстройствоПолезная энергия (работа), затраченная энергия (полная работа)КПД
Электронагреватель, электроплитка, электрочайник, кипятильник.
Газовая горелка, паровая турбина, спиртовка, плавильная печь.
Двигатель автомобиля, самолета.
Ружье с пороховым зарядом, пушка