Как определить кислотность среды по уравнению

Cреда водных растворов веществ. Индикаторы

Материалы портала onx.distant.ru

Определение характера среды водных растворов веществ. Индикаторы.

Среда водных растворов

Вода и водные растворы окружают нас повсюду. В воде и в водных растворах присутствуют ионы Н + и ОН — . Избыток или недостаток этих ионов определяет среду раствора.

В нейтральном растворе количество ионов водорода Н + равно количеству гидроксид-ионов ОН – .

[ Н + ] = [ ОН – ]

Если количество ионов водорода Н + больше количества гидроксид-ионов ОН , то среда раствора кислая:

[ Н + ] > [ ОН – ]

Если количество ионов водорода Н + меньше количества гидроксид-ионов ОН , то среда раствора щелочная:

[ Н + ] ОН – ]

Для характеристики кислотности среды используют водородный показатель рН. Он определяется, как отрицательный десятичный логарифм концентрации ионов водорода. В нейтральной среде рН равен 7, в кислой — меньше 7, в щелочной — больше 7.

Кислая среда Нейтральная среда Щелочная среда
[Н + ] > [ОН – ][Н + ] = [ОН – ][Н + ] – ]
pH pH = 7 pH > 7

Индикаторы

Для определения среды раствора используют специальные вещества, которые изменяют цвет в зависимости от среды раствора: индикаторы. В зависимости от среды эти вещества могут переходить в разные формы с различной окраской.

Чаще всего используют следующие индикаторы: лакмус, метилоранж, фенолфталеин.

Окраска индикаторов в различных средах:

Индикатор/среда Кислая Нейтральная Щелочная
Лакмус Красный Фиолетовый Синий
Метилоранж Красный Оранжевый Желтый
Фенолфталеин Бесцветный Бесцветный Малиновый

Растворы кислот и оснований

Характер среды определяется процессами, которые происходят с веществами в растворе. Кислот, основания и соли в воде диссоциируют на ионы. Кислоты диссоциируют на катионы водорода H + и анионы кислотных остатков:

HA = H + + A –

При этом в растворе возникает избыток катионов водорода Н + , поэтому среда водных растворов кислот — кислая (что вполне логично).

Сильные кислоты диссоциируют в разбавленных растворах практически полностью, поэтому среда разбавленных растворов сильных кислот, как правило, сильно кислотная. Некоторые кислоты (слабые) диссоциируют частично, поэтому среда водных растворов слабых кислот — слабо кислая.

Основания диссоциируют на катионы металлов и гидроксид-анионы ОН – :

МеОH = Ме + + ОН –

При этом в растворе возникает избыток катионов гидроксид-анионов ОН , поэтому среда водных растворов оснований — щелочная. Сильные основания (щелочи) хорошо растворимы в воде, поэтому среда их водных растворов — сильно щелочная. Нерастворимые основания в воде практически не растворяются, поэтому в водном растворе оказывается лишь небольшое количество ионов ОН . Среда водного раствора аммиака слабо щелочная.

Растворы солей

Среда водных растворов солей определяется не только диссоциацией, но и особенностями взаимодействия катионов металлов и анионов кислотных остатков с водой — гидролизом солей .

Попадая в воду, соли диссоциируют на катионы металлов (или ион аммония NH4 + ) и анионы кислотных остатков.

Катионы металлов, которым соответствуют слабые основания, притягивают из воды ионы ОН , при этом в воде образуются избыточные катионы водорода Н + . Протекает гидролиз по катиону. Катионы металлов, которым соответствуют сильные основания, с водой таким образом не взаимодействуют.

Например , катионы Fe 3+ подвергаются гидролизу:

Fe 3+ + HOH ↔ FeOH 2+ + H +

Анионы кислотных остатков, которым соответствуют слабые кислоты, притягивают из воды катионы Н + , при этом в воде остаются гидроксид-анионы ОН . Протекает гидролиз по аниону. Анионы кислотных остатков сильных кислот таким образом с водой не взаимодействуют.

Например , ацетат-ионы (остаток уксусной кислоты CH3COOH) подвергаются гидролизу:

CH3COO — + HOH ↔ CH3COOH + OH —

В зависимости от состава соли водные растворы солей могут иметь кислую, нейтральную или щелочную среду.

Типы гидролиза солей в водных растворах:

Катио н/анион Катион сильного основания Катион слабого основания
Анион сильной кислотыГидролиз не идетГидролиз по катиону
Анион слабой кислотыГидролиз по анионуГидролиз по катиону и аниону

Среда водных растворов солей:

Катио н/анион Катион сильного основания Катион слабого основания
Анион сильной кислотыНейтральнаяКислая
Анион слабой кислотыЩелочна яНейтральная*

* на практике среда водных растворов солей, образованных слабым основанием и слабой кислотой, определяется силой кислоты и основания

Тип гидролиза и среда водных растворов некоторых солей:

Катио н/анион Na + NH4 +
Cl –NаCl, гидролиз не идет, среда нейтральная(NH4)2CO3 гидролиз по катиону, среда щелочная
CO3 2 –Na2CO3, гидролиз по аниону, среда щелочна яNa2CO3, гидролиз по катиону и аниону, среда определяется силой кислоты и основания

Индикаторы будут по-разному окрашиваться в водных растворах таких солей, в зависимости от среды. Таким образом, с помощью индикаторов можно различить водные растворы некоторых солей.

Окраска лакмуса в водных растворах солей, в зависимости от строения соли:

Катио н/анион Катион сильного основания Катион слабого основания
Анион сильной кислотыЛакмус фиолетовыйЛакмус красный
Анион слабой кислотыЛакмус синийОкраска лакмуса зависит от силы кислоты и основания

Окраска лакмуса в водных растворах некоторых солей:

Катио н/анион Na + NH4 +
Cl –NаCl, лакмус фиолетовый(NH4)2CO3 лакмус красный
CO3 2 –Na2CO3, лакмус синийNa2CO3, окраска лакмуса зависит от силы кислоты и основания

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Водородный показатель кислотности (рН)

Водородный показатель, pH (лат. pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

.

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X, а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH.

.

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора, pOH, которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

.

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 — 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH= −1.

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 1014 , то ясно, что при такой температуре pH + pOH = 14.

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH 7, pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH − ); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH-метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1–2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор, который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH-метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН, что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный методкислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. Влияние температуры на значения pH:

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H + ) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Водородный показатель pH: общее понятие и методы определения. Таблицы величин pH

Важной характеристикой водных растворов является уровень концентрации в них положительно заряженных ионов водорода и отрицательно заряженных гидроксид-ионов относительно друг друга. При одинаковых концентрациях и раствор считается нейтральным, при избытке катионов – кислотным и при избытке анионов – основным (щелочным). Величина, называемая водородным показателем, или pH раствора, – это количественное выражение кислотности.

Понятие о водородном показателе

Определение pH-фактора базируется на кислотно-основных свойствах воды. Ее молекулы способны к самопроизвольной диссоциации, благодаря чему в воде всегда присутствует некоторое количество ионов и . Их концентрация мала вследствие обратимости процесса диссоциации, который выражается формулой

+

Из формулы видно, что ионы водорода и гидроксила содержатся в воде в равной концентрации: []=[]. В стандартных условиях (при температуре 22–25° C) она составляет моль⁄л.

Величина =[]∙[] называется ионным произведением воды. При заданной температуре она является постоянной (при 22–25° C = моль) не только для воды, но и для разбавленных растворов. При добавлении кислоты к воде повышается концентрация [] и понижается [] (кислотность возрастает), при добавлении щелочи падает [] и растет [] (кислотность понижается).

В качестве показателя кислотности удобно использовать десятичный логарифм величины [] с обратным знаком:

pH = -lg []

Для воды и любой нейтральной среды водородный показатель составит: pH = — lg⁡ = -(-7) = 7

Шкала pH

На основе постоянства значения ионного произведения воды построена шкала величин pH различных растворов. Отметка «7» в ней соответствует нейтральной среде, числа слева от 7 – кислотной, и справа – основной (щелочной).

Важно помнить, что, поскольку для определения показателя кислотности для избавления от знака «минус» в показателе степени используется отрицательный логарифм, понижение pH означает повышение концентрации , то есть кислотных свойств, и наоборот. Так, значение 5 соответствует концентрации [] = моль⁄л и большей кислотности, чем 9, означающее, что в растворе содержится моль⁄л катионов водорода.

Методы определения величины pH

В зависимости от целей и условий значение водородного показателя устанавливается различными методами. Качественно оценить кислотность среды позволяет применение индикаторов. Точные количественные результаты получают с помощью измерительных методов.

Использование индикаторов

Метод основан на способности ряда органических веществ к изменению окраски в зависимости от кислотности среды. Распространенные индикаторы – лакмус, метилоранж, фенолфталеин. Каждый из них проявляет свои свойства в ограниченном диапазоне значений pH.

ИндикаторИнтервал шкалы pHХарактер изменения цвета

по мере уменьшения кислотности

Лакмус5,0–8,0

красный → фиолетовый → синий

Метилоранж3,1–4,4

красный → оранжевый → желтый

Фенолфталеин8,2–10,0

бесцветный → малиновый

Индикаторный метод отличает простота наглядность и быстрота, но он недостаточно точен и зависит от субъективного восприятия цвета.

Достичь большей точности позволяет применение универсального индикатора. Он представляет собой смесь веществ и охватывает широкий диапазон pH от 0 до 14. Цвет, приобретенный нанесенным на бумажную полосу индикатором в той или иной среде, сравнивают с эталонной шкалой. Универсальный индикатор дает возможность определять pH с точностью до десятых долей.

Индикаторные методы неэффективны в случаях, когда раствор слишком слабый, имеет собственную яркую окраску или замутнен.

Ионометрический метод

Водородный показатель можно определить с точностью до 0,01 в широком диапазоне, применяя pH-метр. Прибор представляет собой электронный милливольтметр, определяющий разность потенциалов на электродах, один из которых (измерительный pH-электрод) помещен в исследуемый раствор. Другой (электрод сравнения) погружен в электролит с определенным pH. На нем создается стабильный потенциал, относительно которого измеряют pH анализируемой среды. Разность потенциалов пропорциональна величине показателя кислотности.

pH-метр требует тщательной калибровки. Для нее используются специально приготовленные буферные растворы с эталонными значениями pH, устойчивыми при разбавлении или добавкам небольших количеств сильных кислот или оснований. В приготовлении буферных растворов для pH-метрии применяются стандарт-титры – наборы чистых реактивов с точно известной массой, которые разводят дистиллированной водой до необходимой концентрации.

Конструкция современных pH-метров предусматривает вместо двух электродов один комбинированный, что значительно упрощает их использование.

Аналитический объемный метод

В данном способе определения водородного показателя применяется процедура кислотно-основного титрования, ведущую роль в которой играет реакция нейтрализации исследуемого образца титрантом – стандартным раствором с определенным pH. Если титруется раствор кислоты, в качестве титранта используют щелочь (гидроксид натрия или калия), если основание – титрантом является раствор сильной кислоты (соляной или серной).

Титрант медленно добавляют к образцу до достижения точки эквивалентности – момента, когда происходит полная нейтрализация титруемого раствора. Фиксация конечной точки титрования может производиться несколькими способами: с помощью индикатора, потенциометрии, спектрофотометрии или измерения электропроводности. Определив необходимый для нейтрализации объем титранта и зная его концентрацию, вычисляют pH препарата.

Влияние температуры на значение pH

Повышение температуры приводит к росту диссоциации слабых электролитов, в том числе и воды. Повышается равновесная концентрация ионов и и возрастает величина ионного произведения. Соответственно меняется и водородный показатель для нейтральной среды:

Температура

T, 0° C

02025406080100
Ионное произведение воды, , моль ⁄л

Нейтральный pH = — lg(√(K_W ))=-lg K_W/2

7,57,176,86,56,36,1

Температурные изменения оказывают сложное и неоднозначное влияние на измерения pH. В целом органические и щелочные пробы более зависимы от них, чем неорганические и кислотные. При pH-метрии и титровании температура строго контролируется, а полученные результаты пересчитываются с целью приведения к значению, характерному при 25° C.

Значения pH некоторых растворов

При определении величины pH для растворов кислот и оснований принято выражать концентрацию раствора в единицах нормальности. Нормальная концентрация – это количество моль-эквивалентов вещества в 1 л раствора: .

Эквивалентом называется частица (реальная либо условная), которая в химических реакциях равноценна одному катиону или одному электрону. Моль-эквивалент содержит эквивалентов, а его масса в единицах называется молярной массой эквивалента .

Многоосновные кислоты могут отдавать один или более ионов водорода, поэтому число моль-эквивалентов в растворе и, соответственно, нормальность будет в разных случаях неодинакова. Она имеет обозначение «н.» с указанием доли нормальной концентрации. Например, серная кислота, молекула которой при диссоциации отдает два протона , при молярной концентрации имеет нормальность 1н.

pH растворов кислот

КислотаКонцентрацияpH
Азотная0,1 н.1,0
Борная0,1 н.5,2
Муравьиная0,1 н.2,3
Сернаян.0,3
0,1 н.1,2
0,01 н.2,1
Сернистая0,1 н.1,5
Сероводородная0,1 н.4,1
Уксуснаян.2,4
0,1 н.2,9
0,01 н.3,4
Солянаян.0,1
0,1 н.1,1
0,01 н.2,0
Щавелевая0,1 н.1,3

pH растворов оснований

Нормальность щелочей определяется аналогично нормальности кислот, исходя из количества гидроксид-ионов, которые отщепляются при диссоциации.

ОснованиеКонцентрацияpH
Гидроксид калиян.14,0
0,1 н.13,0
0,01 н.12,0
Гидроксид кальциянасыщенный12,4
Гидроксид натриян.14,0
0,1 н.13,0
0,01 н.12,0

Значения pH некоторых бытовых веществ и пищевых продуктов

ВеществоpHПродуктpH
электролит аккумуляторный на основеРоль показателя кислотности

Знание и использование водородного показателя играет значительную роль во многих областях жизни людей, особенно в здравоохранении и медицине, в водоснабжении, в производстве и грамотном потреблении продуктов питания и средств бытовой химии. Оно также важно в организации сельского хозяйства, в производстве кормов и удобрений. Показатель pH имеет большое значение при проведении научно-исследовательских работ в химии и биологии, а также при мониторинге многих технологических процессов в нефтехимической, топливной, атомной и других отраслях промышленности.


источники:

http://www.calc.ru/214.html

http://allinchemistry.ru/obshhaya-himiya/vodorodnyj-pokazatel-ph-ponyatie-i-metody-opredeleniya-tablitsy