Как отделить корни уравнения графически

Как отделить корни уравнения графически

1. Приближенное решение нелинейных уравнений

Пусть дано уравнение с одним неизвестным

, (1.1)

где f ( x ) — заданная алгебраическая или трансцендентная функция.

Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная , логарифмическая, тригонометрические, обратные тригонометрические.

Решить уравнение — значит найти все его корни, то есть те значения х , которые обращают уравнение в тождество, или доказать, что корней нет.

В общем случае не существует формул, по которым определяются точные значения корней уравнения (1.1). Для отыскания корней используют приближенные методы, при этом корни находятся с некоторой заданной точностью ε . Это означает, что если x — точное значение корня уравнения, а x ’ — его приближенное значение с точностью ε , то | x — x ’ | ≤ ε . Если корень найден с точностью ε , то принято писать x = x ± ε .

Будем предполагать, что уравнение (1.1) имеет лишь изолированные корни, то есть для каждого корня существует окрестность, не содержащая других корней этого уравнения.

Приближенное решение уравнения состоит из двух этапов:

1. Отделение корней, то есть нахождение интервалов из области определения функции f ( x ), в каждом из которых содержится только один корень уравнения (1).

2. Уточнение корней до заданной точности.

Отделение корней можно проводить графически и аналитически.

Для того , чтобы графически отделить корни уравнения (1.1), строят график функции y = f ( x ). Абсциссы точек его пересечения с осью Ox есть действительные корни уравнения (рис. 1). Практически бывает удобнее заменить уравнение (1.1) равносильным ему уравнением

, (1.2)

где Φ( x ) и Ψ( x ) — более простые функции, чем f ( x ). Абсциссы точек пересечения графиков функций y = Φ( x ) и y = Ψ( x ) дают корни уравнения (1.2), а значит и исходного уравнения (1.1) (рис.2).

Аналитическое отделение корней основано на следующей теореме: если непрерывная на отрезке [ a , b ] функция y = f ( x ) принимает на концах отрезка значения разных знаков, т.е. f ( a )· f ( b ) f ( x ) = 0; если при этом производная f ’ ( x ) сохраняет знак внутри отрезка [ a , b ], то корень является единственным.

Уточнение корней заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Рассмотрим самый простой из них — метод половинного деления.

Пусть корень отделён и принадлежит отрезку [ a , b ]. Находим середину отрезка [ a , b ] по формуле

Если f ( c ) = 0, то с — искомый корень. Если f ( c ) ≠ 0, то в качестве нового отрезка изоляции корня [ a 1 , b 1 ] выбираем ту половину [ a , c ] или [ c , b ], на концах которой f ( x ) принимает значения разных знаков. Другими словами, если f ( a ) ∙ f ( c ) a , c ], если f ( a ) ∙ f ( c ) — отрезку [ c , b ]. Полученный отрезок снова делим пополам, находим c1 ,

вычисляем f ( c 1 ), выбираем отрезок [ a 2 , b 2 ] и т.д. Длина каждого нового отрезка вдвое меньше длины предыдущего, то есть за n шагов отрезок сократится в 2 n раз. Как только будет выполнено условие

то в качестве приближенного значения корня, вычисленного с точностью ε , можно взять

Пример . Пусть требуется решить уравнение

с точностью ε = 0,0001. Отделим корень графически. Для этого преобразуем уравнение к виду

и построим графики функций (рис. 4):

Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку [0; 1].

Подтвердим аналитически правильность нахождения отрезка изоляции корня. Для отрезка [0; 1] имеем:

. Следовательно, корень отделён правильно.

Уточнение корня выполним методом половинного деления.

Корень принадлежит отрезку

Корень принадлежит отрезку

Корень принадлежит отрезку

Графическое отделение корней

Графическое отделение корнейосновано на графическом способе решения уравнений – отыскании точек, в которых функция f(x)пересекает ось 0Х.

Пример 1.2.2-1. Отделить корни уравнения ln (x-1) 2 – 0.5 = 0.

На рис. 1.2.2-1 изображен график функции y = ln (x-1) 2 – 0.5, из которого следует, что уравнение имеет два действительных корня [-1;0] и [2;3].

В некоторых случаях удобно вначале преобразовать функцию f(x) к виду f(x)=g1(x)— g2(x), из которого, при условии f(x)=0, следует, что g1(x)=g2(x). При построении графиков y1=g1(x)и y2=g2(x)находят отрезки, содержащие точки пересечения этих графиков.

Пример 1.2.2-2. Отделить корни уравнения сos(x) – x + 1 = 0.

Приведем исходное уравнение к виду сos(x)= x – 1. Построив графики функций y1 = сos(x) и y2 = х – 1 (рис. 1.2.2), выделим отрезок, содержащий корень [1;2].

Аналитическое отделение корней

Аналитическое отделениекорней основано на следующей теореме.

Если функция f(x) непрерывна и монотонна на отрезке [a;b] и принимает на концах отрезка значения разных знаков, то на отрезке [a;b] содержится один корень уравнения f(x)=0.

Действительно, если условия теоремы выполнены, как это имеет место на отрезке [a;b] (рис. 1.2.2-3), то есть f(a)∙f(b) 0 для xÎ [a;b], то график функции пересекает ось только один раз и, следовательно, на отрезке [a;b] имеется один корень уравнения f(x) = 0.

Аналогично можно доказать единственность корня на отрезке [c;d], на[d;e]и т.д

Таким образом, для отделения корней нелинейного уравнения необходимо найти отрезки, в пределах которых функция монотонна и изменяет свой знак. Принимая во внимание, что непрерывная функция монотонна в интервалах между критическими точками, при аналитическом отделении корней уравнения можно рекомендовать следующий порядок действий:

1)установить область определения функции;

2)определить критические точки функции, решив уравнение f¢(x)=0;

3)составить таблицу знаков функции f(x) в критических точках и на границах области определения;

4)определить интервалы, на концах которых функция принимает значения разных знаков.

Пример 1.2.2-3. Отделить корни уравнения x — ln(x+2) = 0.

Область допустимых значений функции f(x) = x — ln(x+2) лежит в интервале (-2; ∞), найденных из условия x+2>0. Приравняв производную f¢(x)=1-1/(x+2) к нулю, найдем критическую точку хk= -1. Эти данные сведены в табл. 1.2.2-1 и табл. 1.2.2-2 знаков функции f(x).

Таблица 1.2.2-1 Таблица 1.2.2-.2

xx→-2-1x→∞x-1.9-1.1-0.92.0
Sign(f(x))++Sign(f(x))++

Уравнение x — ln(x+2) = 0 имеет два корня (-2;-1]и [-1; ∞) . Проверка знака функции внутри каждого из полученных полуинтервалов (табл.1.2.2) позволяет отделить корни уравнения на достаточно узких отрезках [-1.9;-1.1]и [-0.9;2.0].

Уточнение корней

Задача уточнения корня уравнения с точностью , отделенного на отрезке [a;b], состоит в нахождении такого приближенного значения корня , для которого справедливо неравенство .Если уравнение имеет не один, а несколько корней, то этап уточнения проводится для каждого отделенного корня.

Реферат: Отделение корней. Графический и аналитический методы отделения корней

Министерство образования и науки РФ

Государственное образовательное учреждение

высшего профессионального образования

Владимирский государственный университет

Кафедра автоматизации технологических процессов

по предмету: Моделирование систем

на тему: ”Отделение корней. Графический и аналитический методыотделения корней

Содержание

1. Отделение корней. 3

2. Графический метод. 4

3. Аналитический метод (табличный или шаговый). 5

4. Метод половинного деления (Дихотомии). 9

1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на

известной теореме, утверждающей, что если непрерывная функция f(x) на

концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b) 3 -6x+2=0 видим, что при при что уже свидетельствует о наличии хотя бы одного корня.

Для уравнения видим, что Обнаружив, что устанавливаем факт наличия единственного корня, и остается лишь найти его (как говорится, за немногим стало дело).

Если предварительный анализ функции затруднителен, можно “пойти в лобовую атаку”. При уверенности в том, что все корни различны, выбираем некоторый диапазон возможного существования корней (никаких универсальных рецептов!) и производим “прогулку” по этому интервалу с некоторым шагом, вычисляя значения f(x) и фиксируя перемены знаков. При выборе шага приходится брать его по возможности большим для минимизации объема вычислений, но достаточно малым, чтобы не пропустить перемену знаков.

2. Графический метод

Этот метод основан на построении графика функции y=f(x). Если построить график данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее функцию f(x) представить в виде разности двух более простых функций, т.е. и строить графики функций и . Абсцисса точки пересечения этих графиков и будет являться корнем уравнения (1), а отрезок на оси абсцисс которому принадлежит данный корень, будет являться интервалом изоляции. Этот метод отделения корней хорошо работает только в том случае, если исходное уравнение не имеет близких корней. Данный метод дает тем точнее результат, чем мельче берется сетка по оси Ох.

Пример. Графически решить уравнение .

Решение. Запишем исходное уравнение в виде: , т.е. и .

Таким образом, корни данного уравнения могут быть найдены как абсциссы точек пересечения кривых и .

Теперь построим графики функций и определим интервал изоляции корня.

Название: Отделение корней. Графический и аналитический методы отделения корней
Раздел: Рефераты по информатике
Тип: реферат Добавлен 11:03:33 16 июня 2011 Похожие работы
Просмотров: 2994 Комментариев: 22 Оценило: 8 человек Средний балл: 4.5 Оценка: 5 Скачать
Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение х=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное.

3. Аналитический метод (табличный или шаговый).

Для отделения корней полезно помнить следующие известные теоремы:

1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b) 0, значит корня на отрезке [0;0.5] нет.

f(0.5)f(1) 0, значит корня на отрезке [0.5;0.75] нет.


источники:

http://megaobuchalka.ru/11/54487.html

http://www.bestreferat.ru/referat-284431.html