Как отличить уравнение от не уравнения

Выражения и уравнения — определение и вычисление с примерами решения

Содержание:

Выражения и уравнения

Вы уже знаете, что такое буквенные выражения, и умеете их упрощать с помощью законов сложения и умножения. Например,

Пример:

Есть ли коэффициент в выражении ? Да. Он равен 1, поскольку

Вспомним, что преобразование выражения со скобками в выражение без скобок называется раскрытием скобок. Например:

Обратным действием в этом примере является вынесение общего множителя за скобки.

Слагаемые, содержащие одинаковые буквенные множители, называют подобными слагаемыми. С помощью вынесения общего множителя за скобки сводят подобные слагаемые:

Правила раскрытия скобок

Правила раскрытия скобок

  1. Если перед скобками стоит знак , то при раскрытии скобок знаки слагаемых в скобках сохраняют;
  2. Если перед скобками стоит знак , то при раскрытии скобок знаки слагаемых в скобках изменяют на противоположные.

Пример:

Упростите выражение: 1) ; 2)

Решение:

1. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых сохраняются:

2. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых изменяются на противоположные:

Для раскрытия скобок используют распределительное свойство умножения: . Если , то знаки слагаемых и не изменяют. Если , то знаки слагаемых и изменяют на противоположные.

Пример:

Упростите выражение: 1) 2)

Решение:

1. Множитель перед скобками является положительным, поэтому при раскрытии скобок знаки всех слагаемых сохраняем:

2. Множитель перед скобками является отрицательным, поэтому при раскрытии скобок знаки всех слагаемых изменяем на противоположные:

  1. Слово «сумма» происходит от латинского summа, что значит «итог», «общее количество».
  2. Слово «плюс» происходит от латинского plus, что значит «больше», а слово «минус» — от латинского minus, что значит «меньше». Знаки и используют для обозначения действий сложения и вычитания. Эти знаки ввёл чешский учёный И. Видман в 1489 г в книге «Быстрый и приятный счёт для всех торговцев»(рис. 138).

Уравнения. Основные свойства уравнений

Вы уже знаете, что такое уравнение, корень уравнения. Вспомним основные формулировки.

Определение:

Уравнением называется равенство, содержащее неизвестное, значение которого нужно найти.

Неизвестное число в уравнении обозначают буквой или , или и т.п. Например, запись является

уравнением, где — неизвестное и является искомым.

Определение:

Значение неизвестного, обращающее уравнение в верное числовое равенство, называется корнем уравнения.

Так, корнем уравнения является число , поскольку .

Уравнение может иметь больше одного корня. Например, уравнение имеет бесконечно много корней, так как любое число обращает уравнение в верное числовое равенство. С уравнениями, имеющими два, три или более корней, вы ознакомитесь позднее.

Уравнение может не иметь корней. Например, уравнение не имеет корней, так как не существует числа, которое в произведении с числом даёт число .

Определение:

Решить уравнение — значит найти все его корни или установить, что уравнение не имеет ни одного корня.

В 5 классе вы находили корень уравнения как неизвестный компонент арифметического действия. При решении более сложных уравнений опираются на свойства равенств. Рассмотрим основные из них.

Посмотрите на рисунок 139. Вы видите, что на левой чаше весов находится арбуз неизвестной массы, а на правой — гири массой 5 кг и 3 кг. Если на обе чаши весов положить по гире массой 3 кг, то весы останутся в равновесии (рис. 140). Понятно, что, сняв эти гири или поставив навесы одинаковые гири другой массы, снова получим равновесие на весах. Этот пример иллюстрирует следующее свойство равенств.

Определение: Если к обеим частям равенства прибавить (из обеих частей равенства вычесть) одно и то же число, то равенство не изменится.

Пример:

Решите уравнение: 1) .

Решение:

К левой и правой частям уравнения прибавим число 12 и упростим полученное равенство:

Решая уравнение, в левой его части «уединили неизвестное». Такой же результат получим, если число 12 перенесём из левой части в правую, изменив при этом его знак.

Определение:

Слагаемое можно переносить из одной части уравнения в другую, изменяя знак этого слагаемого на противоположный.

Пример:

Можно ли переносить в другую часть уравнения слагаемое, содержащее неизвестное? Да.

Посмотрите на рисунок 141. Вы видите, что масса пакета муки равна 2 кг. Понятно, что масса трёх таких пакетов втрое больше (рис. 142). Этот пример иллюстрирует другое свойство равенств.

Определение: Если обе части равенства умножить (разделить) на одно и то же число, отличное от нуля, то равенство не изменится. Данное свойство используют для решения уравнений. Рассмотрим пример.

Пример:

Решите уравнение

Решение:

Чтобы избавиться от дробного коэффициента, умножим на 3 обе части уравнения:

Основные свойства уравнений

Основные свойства уравнений

  1. Корни уравнения не изменятся, если к обеим частям уравнения прибавить (из обеих частей уравнения вычесть) одно и то же число.
  2. Корни уравнения не изменятся, если обе части уравнения умножить (разделить) на одно и то же число, отличное от нуля.

Считают, что язык алгебры — это уравнения. «Чтобы решить вопросы. относящиеся к числам или к абстрактным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий И. Ньютон (1643-1727) в своём учебнике по алгебре, названном «Общая арифметика».

Применение уравнений к решению задач

В 5 классе с помощью уравнений вы решали задачи на нахождение суммы двух величин или их разности.

В 6 классе будем рассматривать особый вид задач — на равенство двух величин. В таких задачах тоже сравнивают две величины, например, количество книг на первой и второй полках. Значения же выражений с этими двумя величинами приравнивают.

Пример:

На первой полке книг в 3 раза больше, чем на второй. Если с первой полки переставить на вторую 12 книг, то на обеих полках их станет поровну. Сколько книг на каждой полке?

Решение:

Составим краткую запись задачи в виде таблицы 23

Пусть — количество книг на второй полке, тогда — количество книг на первой полке. Если с первой полки переставить на вторую 12 книг, то на первой полке их станет , а на второй — . По условию, это количество книг одинаково. Составим уравнение: . Решим уравнение: . Тогда . Следовательно, на первой полке 36 книг, а на второй — 12 книг.

Первым произведением, содержащим исследование алгебраических вопросов, считают трактат «Арифметика» Диофанта (середина IV в.). Из 13 книг, составляющих полное собрание трудов Диофанта, до нас дошло только 6. В них предложено решение сложных алгебраических задач. Основная часть трактата — сборник задач (в первых шести книгах их 189) с решениями и удачно подобранными иллюстрациями к способам решения.

Перпендикулярные и параллельные прямые

Вы знаете, что прямая — это геометрическая фигура. Две прямые могут по-разному размещаться на плоскости. В 6 классе вы узнаете о перпендикулярных и параллельных прямых.

Перпендикулярные прямые

Посмотрите па перекрёсток дорог на рисунке 143. Вы видите, что дороги напоминают пересекающиеся прямые, которые образуют четыре прямых угла. В этом случае говорят, что прямые пересекаются под прямым углом. В тетради по математике клеточки образуются перпендикулярными прямыми.

Определение:

Две прямые на плоскости называются перпендикулярными, если они пересекаются под прямым углом.

На рисунке 144 изображены прямые и , которые пересекаются в точке О под прямым углом, то есть являются перпендикулярными.

Записывают: , а на рисунке обозначают знаком прямого угла (см. рис. 145). Говорят: «Прямая перпендикулярна прямой ».

Если прямая перпендикулярна прямой , то и прямая перпендикулярна прямой . Иначе говорят: прямые и взаимно перпендикулярны.

Пример:

Бывают ли перпендикулярными отрезки? лучи? Да, если они являются частями соответствующих перпендикулярных прямых (рис. 145—146).

Для построения перпендикулярных прямых используют транспортир или угольник. На рисунке 147 вы видите, как строили прямую , перпендикулярную прямой , с помощью транспортира, а на рисунке рис. 148 — с помощью угольника.

Параллельные прямые

Посмотрите на рисунок 149. Вы видите рельсы трамвайных путей, напоминающие прямые, которые лежат в одной плоскости и не пересекаются. Это пример параллельных прямых. Вокруг нас много других примеров параллельных прямых. Так, в тетради в клеточку горизонтальные линии параллельны. То же самое можно сказать и про вертикальные линии. Противоположные края парты, противоположные стороны оконной рамы, троллейбусные штанги также параллельны.

Определение:

Две прямые на плоскости называются параллельными, если они не пересекаются.

На рисунке 150 изображены параллельные прямые и .

Записывают: . Говорят: «Прямая параллельна прямой ».

Если прямая параллельна прямой , то и прямая параллельна прямой . Однако для параллельных прямых термин «взаимно параллельные» не применяют.

Пример:

Бывают ли параллельными лучи? отрезки? Да, если они являются частями соответствующих параллельных прямых.

На рисунке 151 вы видите, как с помощью линейки и угольника через точку провели прямую , параллельную прямой .

Название «перпендикулярный» происходит от латинского слова «perpendicufaris», которое означает «отвесный». Знак предложил Пьер Еригон (1580—1643) — французский математик и астроном.

Название «параллельный» происходит от греческого слова «раralelos» — «идущий рядом». Символ параллельности известен с античных времён Его использовали Герои и Папп Александрийский. Сначала символ был похож на нынешний знак равенства, но с появлением последнего, чтобы избежать путаницы, символ был повёрнут вертикально Уильямом Отредом в 1677 году

Координатная плоскость

Вы уже знаете, что такое координатная прямая (рис. 162). На ней точка — начало отсчёта, стрелка показывает направление возрастания чисел, а цена деления составляет одну единицу.

Однако на практике часто приходится пользоваться ориентирами не только вдоль прямой, но и на плоскости.

Вы знаете, что в игре «Морской бой» положение корабля определяют с помощью «координат» из цифр и «координат» из букв (рис. 163). В зависимости от выбранной буквы передвигаются на определённое количество клеточек вправо или влево, а цифра указывает, на сколько клеточек нужно сместиться вверх или вниз. Итак, место корабля на поле боя определяют двумя « координатами».

Чтобы определить место в зале кинотеатра, также нужно знать две «координаты»: номер ряда и номер кресла в этом ряду (рис. 164). Причём порядок «координат» в такой паре является строго определённым. Действительно, например, пары чисел 3 и 12 и 12 и 3 направят нас в совершенно разные места зала: в 3-й ряд на 12-е место или в 12-й ряд на 3-е место. В отличие от предыдущего примера, для ориентирования в зале кинотеатра порядок координат не меняют, поскольку неудобно сначала искать номер места в ряду, а лишь затем — сам ряд.

Итак, чтобы охарактеризовать размещение точки на плоскости, нужно задать две координатные прямые с равными единичными отрезками, одна из которых задаёт направление вправо-влево, а вторая — вверх-вниз. Для этого координатные прямые изображают перпендикулярно друг к другу и так, чтобы начала отсчёта на них совпадали (рис. 165). Одну из этих прямых (как правило, горизонтальную) считают первой, а другую — второй. Такая пара координатных прямых образует прямоугольную систему координат.

Первую координатную прямую называют осью абсцисс. Её обозначают . Вторую координатную прямую называют осью ординат. Её обозначают . Общее начало отсчёта координатных прямых называют началом координат (рис. 166).

Плоскость с заданной на ней системой координат называют координатной плоскостью.

Каждой точке на плоскости можно поставить в соответствие пару чисел, взятых в определённом порядке, и наоборот, каждой паре чисел соответствует единственная точка координатной плоскости. Такая упорядоченная пара чисел называется координатами точки в данной системе координат. Координату по оси абсцисс называется абсциссой точки, а координату по оси ординат — ординатой точки.

Кратко записывают: . Читают: «Точка с координатами и », «Точка с координатами 3 и 2» или «3 — абсцисса точки , 2 — её ордината».

Пример:

На координатной плоскости постройте точку: 1) ; 2) .

Решение:

Введём прямоугольную систему координат на плоскости (рис. 167).

1. У точки абсцисса равна 3, а ордината — 2. На оси абсцисс отметим точку, соответствующую числу 3, а на оси ординат — точку, соответствующую числу 2. Через точки, построенные на осях координат, проведём две прямые, параллельные осям (рис. 167). Точка пересечения построенных прямых— искомая точка .

2. Поскольку ордината точки равна 0, то эта точка лежит на оси абсцисс и соответствует числу 5 на этой оси.

Обратите внимание:

  • точка лежит на оси абсцисс, если её ордината равна нулю, и наоборот;
  • точка лежит на оси ординат, если её абсцисса равна нулю, и наоборот;
  • начало координат — точка , имеет координаты .

Пример:

Как определить координаты точки, построенной на координатной плоскости, например, точки на рисунке 168? Для этого нужно через эту точку провести прямые, параллельные осям координат. Прямая, параллельная оси ординат, пересекает ось абсцисс в точке, которая соответствует числу . Значит, первой координатой этой точки является число . Прямая, параллельная оси абсцисс, пересекает ось ординат в точке, которая соответствует числу -4. Значит, другой координатой точки является число . Тогда точка имеет координаты и , то есть .

Координатные оси разбивают координатную плоскость на четыре части. Их называют координатными четвертями и обозначают так: I четверть, II четверть, III четверть, IV четверть (рис. 169).

Точки I четверти имеют положительную абсциссу и положительную ординату. И наоборот, если абсцисса и ордината точки положительные, то она лежит в I четверти, как, например, точка . Аналогично рассуждая, можно выяснить, что точки II четверти имеют отрицательную абсциссу и положительную ординату, точки III четверти — отрицательную абсциссу и отрицательную ординату, а точки IV четверти — положительную абсциссу и отрицательную ординату.

На рисунке 170 показаны знаки координат точек, лежащих в соответствующих четвертях.

Положение любой точки на поверхности Земли определяется двумя координатами: географической широтой и географической долготой.

Географические координаты ввёл древнегреческий учёный Гиппарх во И в. до н.э. Географические координаты применяют для определения положения точек земной поверхности относительно экватора и начального (нулевого) меридиана. Например, Киев имеет следующие географические координаты: восточной долготы, северной широты.

Графики зависимостей между величинами

Вы знаете, что стоимость товара зависит от его количества: чем большее количество товара покупают, тем большей будет его стоимость. Например, если цена одного килограмма конфет составляет 35 грн, то за 2 кг нужно заплатить 70 грн, за 3 кг — 105 грн и т.п. Вы знаете, что такое соответствие можно наглядно отобразить на диаграмме (рис. 174). Однако по диаграмме трудно определить, сколько стоит 2,5 кг конфет или иное их количество. Изобразим данные о стоимости конфет не в виде столбиков, а вертикальными отрезками в системе координат (рис. 175). Поскольку величины «масса конфет» и «стоимость покупки» являются прямо пропорциональными, то верхние концы столбиков диаграммы можно соединить отрезками. Получим линию, показывающую, как изменяется стоимость покупки в зависимости от массы конфет. Такая линия называется графиком зависимости величины «стоимость покупки» от величины «масса конфет».

Обратите внимание:

все точки графика зависимости прямо пропорциональных величин лежат на одной прямой.

Вы знаете, что расстояние и время на его преодоление являются прямо пропорциональными величинами. Поэтому все точки графика движения лежат на одной прямой.

Пример:

Поезд Харьков — Львов выходит из Харькова около и прибывает во Львов около . Скорость поезда составляет , на маршруте он делает 5 остановок, запланированных через каждые 3 часа. На рисунке 176 показан график движения этого поезда.

1) В котором часу новых суток поезд делает первую остановку? Какая это станция?

2) Что показывает число на оси абсцисс? А число ?

3) На каких расстояниях от первой остановки поезд останавливается на других станциях?

4) Что показывает число на оси ординат? А число ?

5) Каковы координаты конечных точек маршрута?

Решение:

По условию задачи, движение поезда начинается в , а заканчивается в следующего дня.

1. Начало новых суток поезд встречает недалеко от станции Лубны, а первую остановку делает в именно на этой станции.

2. Поскольку движение поезда началось в предыдущие сутки, то по оси абсцисс время его отправления из Харькова можно выразить отрицательным числом . Действительно, в предыдущих суток до начала новых суток должно пройти именно . Аналогично, времени остановки поезда в Полтаве на оси абсцисс соответствует отрицательное число.

3. Остановки запланированы через каждые . Поскольку скорость поезда составляет , то за он преодолевает . Следовательно, поезд останавливается на таких расстояниях от Полтавы: .

4. При помощи отрицательных чисел и на оси ординат показано, что в предыдущих суток поезд находился на расстоянии 300 км. не доезжая до станции Лубны, а в предыдущих суток — на расстоянии , не доезжая до этой станции.

5. Конечные результаты точки маршрута поезда имеют координаты .

Пример:

Обязательно ли выбирать конечные точки маршрута для построения графика движения? Нет. График можно построить по любым двум его точкам. Но концы маршрута нужно отметить обязательно.

Обратите внимание:

график движения является прямой (или её частью), поэтому такой график можно построить по любым двум его точкам.

С помощью графиков можно решать целый класс задач. Рассмотрим задачу.

Пример:

Из пунктов и , расстояние между которыми составляет 420 км. навстречу друг другу выехали два автомобиля. Красный автомобиль выехал в 6 ч из пункта и прибыл в пункт в 15 ч. Синий автомобиль выехал в 5 ч из пункта и прибыл в пункт в 11 ч. В котором часу встретятся автомобили?

Решение:

Построим в прямоугольной системе координат графики движения автомобилей (рис. 177). Красный отрезок — график движения красного автомобиля, синий — синего автомобиля. Точке пересечения этих отрезков соответствует время — 9 ч. Итак, автомобили встречаются в 9 ч.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Линейное уравнение с одной переменной
  • Целые выражения
  • Одночлены
  • Многочлены
  • Обыкновенные дроби
  • Отношения и пропорции
  • Рациональные числа и действия над ними
  • Делимость натуральных чисел

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Разница между линейным уравнением и нелинейным уравнением

Разница между линейным уравнением и нелинейным уравнением — Наука

Содержание:

Линейное уравнение против нелинейного уравнения

В математике алгебраические уравнения — это уравнения, которые составлены с использованием полиномов. В явном виде уравнения будут иметь вид P (Икс) = 0, где Икс вектор из n неизвестных переменных, а P — многочлен. Например, P (x, y) = 4x 5 + ху 3 + y + 10 = 0 — алгебраическое уравнение с двумя переменными, записанное явно. Также (x + y) 3 = 3x 2 у — 3zy 4 является алгебраическим уравнением, но в неявной форме и примет вид Q (x, y, z) = x 3 + y 3 + 3xy 2 + 3zy 4 = 0, когда-то написано явно.

Важной характеристикой алгебраического уравнения является его степень. Он определяется как наивысшая степень членов уравнения. Если терм состоит из двух или более переменных, сумма показателей каждой переменной будет считаться мощностью члена. Заметим, что согласно этому определению P (x, y) = 0 имеет степень 5, а Q (x, y, z) = 0 — степень 5.

Линейные уравнения и нелинейные уравнения представляют собой два раздела, определенные на системе алгебраических уравнений. Степень уравнения — это фактор, который отличает их друг от друга.

Что такое линейное уравнение?

Линейное уравнение — это алгебраическое уравнение степени 1. Например, 4x + 5 = 0 — это линейное уравнение одной переменной. x + y + 5z = 0 и 4x = 3w + 5y + 7z — линейные уравнения с 3 и 4 переменными соответственно. В общем случае линейное уравнение от n переменных будет иметь вид m1Икс1 + м2Икс2 +… + Мп-1Иксп-1 + мпИксп = б. Здесь xяS — неизвестные переменные, mяS и b — действительные числа, где каждое из mя не равно нулю.

Такое уравнение представляет собой гиперплоскость в n-мерном евклидовом пространстве. В частности, линейное уравнение с двумя переменными представляет собой прямую линию в декартовой плоскости, а линейное уравнение с тремя переменными представляет собой плоскость в трехмерном евклидовом пространстве.

Что такое нелинейное уравнение?

Квадратное уравнение — это алгебраическое уравнение, которое не является линейным. Другими словами, нелинейное уравнение — это алгебраическое уравнение степени 2 или выше. Икс 2 + 3x + 2 = 0 — нелинейное уравнение с одной переменной. Икс 2 + y 3 + 3xy = 4 и 8yzx 2 + y 2 + 2z 2 + x + y + z = 4 — примеры нелинейных уравнений от 3 и 4 переменных соответственно.

Нелинейное уравнение второй степени называется квадратным уравнением. Если степень равна 3, то это называется кубическим уравнением. Уравнения степени 4 и степени 5 называются уравнениями четвертой и пятой степени соответственно. Было доказано, что не существует аналитического метода для решения любого нелинейного уравнения степени 5, и это верно и для любой более высокой степени. Решаемые нелинейные уравнения представляют собой гиперповерхности, которые не являются гиперплоскостями.

В чем разница между линейным уравнением и нелинейным уравнением?

• Линейное уравнение — это алгебраическое уравнение степени 1, а нелинейное уравнение — это алгебраическое уравнение степени 2 или выше.

• Несмотря на то, что любое линейное уравнение разрешимо аналитически, в нелинейных уравнениях это не так.

• В n-мерном евклидовом пространстве пространство решений линейного уравнения с n переменными является гиперплоскостью, а пространство решений нелинейного уравнения с n переменными — гиперповерхностью, которая не является гиперплоскостью. (Квадрики, кубические поверхности и др.)

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:


    источники:

    http://ru.strephonsays.com/linear-equation-and-vs-nonlinear-equation-9933

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya