Как переносится степень в уравнении

Решение показательных уравнений через преобразования

Продолжаем разговор про решение показательных уравнений. Среди методов решения показательных уравнений есть метод решения уравнений через преобразования. При решении показательных уравнений этим методом используются практически все известные преобразования уравнений. Среди них можно выделить преобразования, характерные именно для показательных уравнений. С этого мы и начнем эту статью – составим список характерных преобразований показательных уравнений и приведем простейшие примеры их проведения. Дальше укажем основные направления проведения преобразований, которых следует придерживаться при решении показательных уравнений через преобразования, и рассмотрим несколько примеров с решениями.

Список характерных преобразований

Замена числа степенью

Преобразование, заключающееся в замене числа степенью, в основном используется для приведения показательного уравнения a f(x) =b , a>0 , a≠1 , b>0 к виду a f(x) =a c , c – некоторое число, с целью дальнейшего его решения, например, методом уравнивания показателей. Приведем пример. Показательное уравнение 2 x =8 путем замены числа 8 степенью 2 3 преобразовывается в уравнение 2 x =2 3 , что дает возможность уравнять показатели и получить решение x=3 .

Здесь стоит особо подчеркнуть два частных случая:

  • Число 1 всегда можно заменить нулевой степенью любого положительного числа, ведь a 0 =1 для любого a>0 . Например, это преобразование позволяет осуществить переход от показательного уравнения 5 x−3 =1 к уравнению 5 x−3 =5 0 , что в дальнейшем позволяет уравнять показатели и получить решение.
  • Любое положительное число a можно рассматривать как первую степень числа a , так как a=a 1 . Например, показательное уравнение 2 x 2 −2·x =2 можно рассматривать как уравнение 2 x 2 −2·x =2 1 , что полезно в плане его решения методом уравнивания показателей.

Преобразования на базе свойств степеней

Очень характерными для показательных уравнений являются преобразования, базирующиеся на свойствах степеней. Давайте рассмотрим их.

Преобразование на базе свойств умножения и деления степеней с одинаковыми основаниями

Этим свойствам соответствуют равенства a p ·a q =a p+q и a p :a q =a p−q , a , p и q – действительные числа, причем a>0 . Первое равенство позволяет заменять произведения степеней с одинаковыми основаниями одной единственной степенью с суммой в показателе и обратно. На базе второго равенства можно частные степеней заменять одной степенью с разностью в показателе и наоборот. Рассмотрим это на примерах преобразования показательных уравнений.

Для примера возьмем показательное уравнение 2 x+1 ·2 x ·2 x−5 =2 2 . В его левой части, очевидно, находится произведение степеней с одинаковыми основаниями, которое в силу свойства умножения степеней с одинаковыми основаниями можно заменить степенью 2 x+1+x+x−5 . То есть, мы можем преобразовать показательное уравнение 2 x+1 ·2 x ·2 x−5 =2 2 к виду 2 x+1+x+x−5 =2 2 , который удобен для дальнейшего решения.

Теперь рассмотрим уравнение . Можно выполнить преобразование этого показательного уравнения, основываясь на свойстве деления степеней с одинаковыми основаниями. Указанное свойство позволяет заменить частное в левой части уравнения степенью 5 2·x−1−(x−3) . В результате проведения такого преобразования получается уравнение 5 2·x−1−(x−3) =5 , которое легко решается через уравнивание показателей.

Наконец, возьмем показательное уравнение 2 x+1 +5·2 x−2 =13 . Для его преобразования равенства a p ·a q =a p+q и a p :a q =a p−q используются справа налево: . Дальше полученное уравнение легко преобразовывается в уравнение 2 x =2 2 , решение которого тривиально.

Преобразования на базе свойств степени произведения и частного

Указанным свойствам отвечают равенства (a·b) p =a p ·b p и (a:b) p =a p :b p , где a , p и q – действительные числа, причем a>0 , b>0 . Первое свойство позволяет заменять степень произведения произведением степеней и обратно, второе – степень частного частным степеней и обратно. Покажем, как преобразования, базирующиеся на этих свойствах степеней, используются при решении показательных уравнений.

Рассмотрим показательное уравнение 5·2 x −(2·5) x =0 . В данном случае мы имеем право провести преобразование, заключающееся в замене степени произведения (2·5) x произведением степеней 2 x ·5 x . Выполнив его, мы придем к уравнению 5·2 x −2 x ·5 x =0 , которое после вынесения за скобки общего множителя 2 x может быть решено методом разложения на множители.

Вот пример использования свойства степени произведения в обратную сторону: 2 x ·3 x =6 −2 , (2·3) x =6 −2 и дальше 6 x =6 −2 , x=−2 .

Аналогично проводится решение показательных уравнений через преобразования, базирующиеся на свойстве степени частного. Например, это преобразование позволяет перейти от показательного уравнения к уравнению , после чего вынести общий множитель 2 x за скобки и решить уравнение методом разложения на множители. А показательное уравнение следует преобразовать к виду и дальше 6 x =6 −2 , x=−2 .

Преобразование на базе свойства степени в степени

Свойству степени в степени отвечает равенство (a p ) q =a p·q , где a , p и q – действительные числа, причем a>0 . Покажем, как это свойство используется для преобразования показательных уравнений.

Обратимся к уравнению . В силу свойства степени в степени данное показательное уравнение можно преобразовать к виду 2 2·3·(x−2) =2 (−1)·(1−x) , что позволяет провести дальнейшее решение через уравнивание показателей.

Равенство (a p ) q =a p·q для преобразования показательных уравнений может применяться и справа налево. Например, преобразование показательного уравнения 3 2·x −4·3 x +3=0 к виду (3 x ) 2 −4·3 x +3=0 позволяет вести дальнейшее решение методом введения новой переменной.

Использование определения степени с отрицательным показателем

Из определения степени с отрицательным показателем следует, что , a>0 . Этот результат при необходимости используется для преобразования показательных уравнений. Рассмотрим пример.

Возьмем показательное уравнение . Видно, что в его записи содержатся две степени, основания этих степеней одинаковые, а показатели отличаются знаком. В этой ситуации опора на определение степени с отрицательным показателем позволяет заменить выражение степенью 2 x 2 −4·x . Такое преобразование приводит исходное показательное уравнение к более простому в плане решения уравнению , в котором степени уже одинаковые. Дальнейшее решение не вызывает вопросов: , , , x 2 −4·x=5 , x 2 −4·x−5=0 , последнее квадратное уравнение имеет два корня −1 и 5 . Они составляют решение исходного показательного уравнения.

Замена корней степенями

Определение степени с дробным показателем дает нам соотношение , a≥0 (в частности, ), связывающее корень со степенью. Оно дает возможность преобразовывать показательные уравнения, осуществляя замену корней степенями. Это касается как числовых выражений с корнями, так и выражений с переменными. Покажем это на примерах.

Решение показательного уравнения требует преобразования числового выражения с корнем в степень . В результате проведения такого преобразования получается показательное уравнение , решение которого находится, например, через уравнивание показателей.

Аналогично проводится преобразование показательных уравнений, в которых под знаками радикалов находятся выражения с переменными. Так с опорой на равенство мы можем преобразовать показательное уравнение к виду . Ну а дальше напрашивается преобразование по свойству степени в степени, которое мы разбирали чуть выше.

Деление обеих частей уравнения на одну и ту же степень

Решение уравнений в некоторых случаях проводится с использованием преобразования, заключающегося в делении обеих частей уравнения на одно и то же выражение. Деление обеих частей уравнения на одно и то же выражение используется и при решении показательных уравнений. В частности, ряд показательных уравнений решается через деление обеих частей уравнения на одну и ту же степень или произведение степеней. Известно, что деление обеих частей уравнения на одно и то же выражение является равносильным, если выражение, на которое производится деление, не обращается в нуль. Так как степень a f(x) не обращается в нуль ни при каких значениях переменной, то деление обеих частей уравнения на одну и ту же степень или на произведение степеней является равносильным преобразованием уравнения. Рассмотрим примеры проведения указанного преобразования при решении показательных уравнений.

В основном через деление обеих частей уравнения на одну и ту же степень решаются показательные уравнения, однородные относительно каких-либо степеней (см. однородные уравнения). Например, — однородное показательное уравнение первой степени относительно степеней 3 x и 5 x . Его решение требует деления на любую из этих степеней. Так деление на 5 x дает равносильное показательное уравнение , решение которого легко находится через ряд следующих преобразований:

Показательное уравнение является однородным уравнением второй степени относительно степеней и . Его решение можно провести через деление обеих частей уравнения на степень или . Покажем его полное решение.

Решите уравнение

Деление обеих частей уравнения на одну и ту же степень позволяет решать не только однородные показательные уравнения. Например, через деление на степень 13 3·x+1 можно решить показательное уравнение 13 5·x−1 ·17 2·x−2 =13 3·x+1 .

А вот пример решения показательного уравнения через деление его обеих частей на произведение трех степеней, находящееся в правой части:

Разложение чисел на простые множители

Довольно характерным преобразованием показательных уравнений является преобразование, состоящее в разложении чисел на простые множители. После него, как правило, следует преобразование, базирующееся на свойстве степени произведения. Проиллюстрируем сказанное примерами.

Допустим, нам потребовалось решить показательное уравнение 5·2 x −10 x =0 . Решение можно начинать с разложения составного числа 10 на простые множители 2 и 5 , то есть, переходить к уравнению 5·2 x −(2·5) x =0

. Теперь следует применить свойство степени произведения: 5·2 x −2 x ·5 x =0 . Остается вынести за скобки общий множитель 2 x и решить полученное показательное уравнение методом разложения на множители.

Вот другое характерное показательное уравнение , решение которого связано с проведение преобразования, заключающегося в разложении числа на простые множители. Разложим число 504 на простые множители:

Значит, 504=2 3 ·3 2 ·7 . Полученное разложение позволяет от исходного показательного уравнения перейти к уравнению , и дальше по свойству степени произведения — к уравнению , что то же самое . Полученное уравнение решается через деление его обеих частей на выражение, находящееся в правой части. Это уравнение мы решили в конце предыдущего пункта.

Преобразование показательных уравнений с сопряженными выражениями

Стоит отдельно выделить группу показательных уравнений, в которых основаниями степеней с одинаковыми показателями являются сопряженные выражения. Вот пример показательного уравнения , которое является типичным представителем этой группы. Для решения подобных уравнений обычно находятся произведения степеней с сопряженными выражениями в основаниях, и полученные соотношения используются для преобразования уравнений. Например, в нашем случае

То есть, . Полученное равенство позволяет преобразовать исходное уравнение к виду . После этого остается провести деление обеих частей уравнения на степень (это преобразование мы разбирали выше), что дает очень простое равносильное уравнение 27=3 x−2 .

Аналогично решается показательное уравнение . Оно в силу равенства может быть преобразовано к виду , и решено методом введения новой переменной. Вот его подробное решение.

Выделение целой части из рациональной дроби

Выделение целой части из рациональной дроби сложно назвать часто используемым преобразованием по отношению к показательным уравнениям и уж тем более типичным и характерным. Но оно бывает полезно при решении показательных уравнений. Так что воспользуемся случаем лишний раз напомнить про него.

Например, выделение целых частей из рациональных дробей в показательном уравнении позволяет ввести новую переменную. Действительно, и , что позволяет преобразовать исходное показательное уравнение в уравнение , и дальше по свойствам степеней . Остается принять или и довести решение до конца.

Направления проведения преобразований. Примеры.

Выше мы рассмотрели самые основные и характерные преобразования показательных уравнений по отдельности, а также разобрали примеры их проведения. Но на практике при решении показательных уравнений обычно приходится проводить не одно какое-то преобразование, а серию последовательных преобразований. Естественно, при этом необходимо четко понимать, для чего проводится то или иное преобразование. Сейчас мы обозначим основные направления проведения преобразований, которых следует придерживаться при решении показательных уравнений.

Можно выделить три основных направления проведения преобразований показательных уравненийM:

  • К одинаковым степеням.
  • К одинаковым основаниям степеней.
  • К одинаковым показателям степеней.

Придерживаясь указанных направлений, следует от исходного показательного уравнения продвигаться к уравнениям, для которых известен метод решения, то есть, к уравнениям a f(x) =b , a f(x) =a c , a f(x) =a g(x) , f(g(x))=0 , f1(g(x))=f2(g(x)) , f1(x)·f2(x)·…·fn(x)=0 и др. Давайте разбираться с этим на конкретных примерах.

К одинаковым степеням

Стремление к одинаковым степеням, то есть, к степеням с одинаковыми основаниями и одинаковыми показателями, при решении показательных уравнений легко объяснимо – после получения одинаковых степеней появляется возможность привести уравнение к удобному для дальнейшего решения виду, ввести новую переменную или каким-либо другим способом продвинуться в решении. Приведем примеры.

Возьмем показательное уравнение 3 x+2 +3 x+1 +3 x =39 . Очевидна возможность получить одинаковые степени 3 x . Реализовать ее позволяет свойство умножения степеней с одинаковыми основаниями. Это свойство позволяет преобразовать исходное показательное уравнение в уравнение 3 x ·3 2 +3 x ·3 1 +3 x =39 с одинаковыми степенями 3 x . Дальше степень 3 x выносится за скобки как общий множитель, и уравнение приводится к простейшему показательному уравнению 3 x =3 с очевидным решением x=1 .

Рассмотрим еще один пример. В показательном уравнении 49·7 2·x −50·7 x +1=0 тоже несложно получить одинаковые степени 7 x . Достичь этого позволяет опора на свойство степени в степени. По свойству степени в степени мы можем заменить 7 2·x выражением (7 x ) 2 , то есть, перейти к уравнению 49·(7 x ) 2 −50·7 x +1=0 . Это открывает путь к решению показательного уравнения через введение новой переменной 7 x =t .

К одинаковым основаниям

Когда нет возможности получить одинаковые степени или такая возможность не очевидна, то можно довольствоваться получением одинаковых оснований. Это тоже бывает полезно при решении показательных уравнений. Проиллюстрируем сказанное примерами.

Несложно заметить, что выражения, отвечающие частям показательного уравнения , можно преобразовать в степени с основаниями 3 . Это позволяют сделать свойства степеней и связь между корнями и степенями с дробными показателями. Действительно, так как и , то исходное показательное уравнение можно преобразовать в уравнение , которое легко решается, например, методом уравнивания показателей.

Переход к одинаковым основаниям позволяет уменьшать количество степеней с разными основаниями, что часто неплохо продвигает в решении показательных уравнений. Например, в показательном уравнении (10 x ) 2 +9·20 x −10·(2 x ) 2 =0 три степени и у всех этих степеней различные основания. Представление степени 20 x в виде 10 x ·2 x позволяет преобразовать исходное уравнение к виду (10 x ) 2 +9·10 x ·2 x −10·(2 x ) 2 =0 . При этом уменьшается количество степеней с различными основаниями с трех до двух, и получается показательное уравнение, однородное относительно степеней 10 x и 2 x , а для таких уравнений есть стандартный метод решения.

Аналогично, в показательном уравнении представление степени 504 x−2 в виде 504 x−2 =2 3·x−6 ·3 2·x−4 ·7 x−2 уменьшает количество степеней с разными основаниями, и открывает дорогу к дальнейшему решению через деление обеих частей уравнения на 2 3·x−6 ·3 2·x−4 ·7 x−2 .

К одинаковым показателям

Если нет возможности вести преобразования в сторону получения одинаковых степеней или хотя бы одинаковых оснований степеней, то стоит рассмотреть возможность продвижения к одинаковым показателям степеней. Это тоже может быть полезно в плане решения показательных уравнений. Приведем примеры.

Легко заметить, что показатели степеней в записи показательного уравнения 5 −3−x ·13 3+x =1 различаются только знаками. В подобных случаях можно переходить к одинаковым показателям. В нашем случае степень 5 −3−x можно рассматривать как , ведь в силу свойства степени в степени . Это позволяет от исходного уравнения перейти к показательному уравнению , в записи которого степени имеют одинаковые показатели, что в свою очередь позволяет с опорой на свойство степени произведения перейти к простейшему показательному уравнению , и получить искомое решение.

Давайте разберем еще один пример. Возьмем показательное уравнение 2·3 2·x =9·2 x . Здесь можно осуществить переход к степеням с одинаковыми показателями, заменив 3 2·x на 9 x . Это преобразование дает уравнение 2·9 x =9·2 x , которое через деление обеих частей на 2 x приводится к простейшему показательному уравнению . Его решением является x=1 .

Степенные или показательные уравнения.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n

3. a n • a m = a n + m

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .

Получим 9 х+8 =(3 2 ) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10•4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .

4 х = (2 2 ) х = 2 2х

И еще используем одну формулу a n • a m = a n + m :

2 2х+4 = 2 2х •2 4

Добавляем в уравнение:

2 2х •2 4 — 10•2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2 :

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2 ) х = 3 2х

Получаем уравнение:
3 2х — 12•3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х ) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3

Возвращаемся к переменной x.

3 х = 9
3 х = 3 2
х1 = 2

Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Как переносится степень в уравнении

Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени ? Оказы вается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

Решите уравнение: `x^3 +4x^2 — 2x-3=0`.

Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

`x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr`

Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравне ния? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.

Если несократимая дробь `p//q` (`p` — целое, `q` — натуральное) является корнем многочлена с целыми коэффициентами , то сво бодный член делится на `p` , а старший коэффициент делится на `q`.

Пусть несократимая дробь `p//q` — корень многочлена (8). Это означает, что

`a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ . «+a_2 (p/q)^2 +a_1(p/q)+0=0`.

Умножим обе части на `q^n`, получаем:

`a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + . + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

а) `x^4+4x^3-102x^2-644x-539=0`; (15)

б) `6x^4-35x^3+28x^2+51x+10=0`. (16)

а) Попробуем найти целые корни уравнения. Пусть `p` — корень. Тогда `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители:

Поэтому `p` может принимать значения:

Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:

1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.

б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in<+-1;+-2;+-5;+-10>`; `qin<1;2;3;6>`.Возможные варианты для `x_0`:

Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` — корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.

К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.

Разложите на множители:

а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

в) Вынесем `x^2` за скобки и сгруппируем:

Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:

В итоге получаем:

Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

Прибегнем к методу неопределённых коэффициентов. Пусть

Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

Далее каждый из квадратных трёхчленов можно разложить на множители.

Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.


источники:

http://tutomath.ru/uroki/stepennye-pokazatelnye-uravneniya.html

http://zftsh.online/articles/5013