Как перевести уравнение кривой в полярную систему координат

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Высшая математика.
  • Аналитическая геометрия.
  • Уравнение эллипса, гиперболы, параболы в полярной системе координат.

Уравнение эллипса, гиперболы, параболы в полярной системе координат.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пример.

Пусть $\Gamma -$ эллипс, ветвь гиперболы или парабола, $F -$ фокус этой кривой, $D -$ соответствующая директриса. Вывести уравнение кривой $\Gamma$ в полярной системе координат, полюс которой совпадает с фокусом а полярная ось сонаправлена с осью кривой (см рисунок 1).

Решение.

Общее свойство эллипса, гиперболы и параболы состоит в следующем $$M\in\Gamma\Leftrightarrow\frac<\rho(M, F)><\rho(M, D)>=const=e,\qquad\qquad (1)$$ где $e -$ эксцентриситет кривой ( $e 1$ для гиперболы и $e=1$ для параболы)

Обозначим расстояние от фокусы до директрисы через $\frac

$( $p-$ параметр кривой, называемый полуфокальным параметром). Тогда из рисунка 1 следует, что $\rho(M, F)=r$ и $\rho(M, D)=\frac

+r\cos\varphi.$ Подставляя эти выражения в (1), получаем $$\frac<\frac

+r\cos\varphi>=e,$$ откуда $$r=\frac

<1-e\cos\varphi>.\qquad\qquad (2)$$ Уравнение (2) и есть искомое уравнение в полярной системе координат, общее для эллипса, гиперболы и параболы.

Примеры.

2.321(а).

Для эллипса $\frac<25>+\frac<16>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в левом фокусе.

Решение.

Найдем эксцентриситет параболы и параметр $p:$

Далее, подставляя найденные параметры в полярное уравнение (2), найденное в предыдущей задаче, найдем уравнение данного эллипса:

2.324(а).

Написать каноническое уравнение кривой второго порядка $r=\frac<9><5-4\cos\varphi>.$

Решение.

Приведем заданное уравнение, к уравнению вида $r=\frac

<1-e\cos\varphi>:$

Отсюда имеем: $e=\frac<4><5>,$ $p=\frac<9><5>.$ Поскольку $e

Далее, подставляя выражения эксцентриситета и параметра по определению, надем полуоси эллипса:

Таким образом, запишем каноническое уравнение эллипса:

Вывести полярное уравнение гиперболы $\frac-\frac=1,$ при условии, что полярная ось сонаправлена с осью $Ox,$ а полюс находится в центре гиперболы.

Решение.

Так как полюс находится в центре гиперболы, то $OM=r,$ тогда $\rho(M, D)=r\cos\varphi-\frac,$ $\rho(M, F)=\sqrt <(r\sin\varphi)^2+(c-r\cos\varphi)^2>.$

Таким образом, из уравнения (1) находим:

Домашнее задание.

2.321(б) Для эллипса $\frac<25>+\frac<16>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в правом фокусе.

2.322. Для правой ветви гиперболы $\frac<16>-\frac<9>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится

а) в левом фокусе, б) в правом фокусе.

2.323. Для параболы $y^2=6x$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в фокусе параболы.

2.324 (б, в) Написать канонические уравнения следующих кривых второго порядка:

Ответ: а) $\frac<16>-\frac<9>=1,$ б) $y^2=6x.$

2.327. Вывести полярное уравнение параболы $y^2=2px$ при условии, что полярная ось сонаправленна с осью $Ox,$ а полюс находится в вершине параболы.

Полярная система координат

Вы будете перенаправлены на Автор24

Образование полярной системы координат

На плоскости, кроме декартовой прямоугольной системы координат, используют также полярную систему координат. Это связано с тем, что сложность уравнений кривых зависит от системы координат, в которой они представляются. Поэтому при удачном выборе системы координат можно существенно упростить решение той или иной задачи.

Уравнение окружности радиуса $R$ с центром в начале координат в декартовой системе координат имеет вид: $x^ <2>+y^ <2>=R^ <2>$. Уравнение той же окружности в полярной системе координат: $\rho =R$.

Полярная система координат вводится следующим образом. На плоскости вибираем некоторую точку $O$, которая называется полюсом. Из этой точки проводим луч $Ox$, который называется полярной осью. Выбираем линейный масштаб для измерения длин отрезков. Для измерения углов выбираем или градусную, или радианную меру.

Положение точки $M$ на плоскости определяют два числа: число $\rho $ — расстояние точки $M$ от полюса (полярный радиус $OM$), а также число $\phi $ — угол, образованный полярным радиусом с полярной осью (полярный угол). Положительным направлением отсчета угла $\phi $ считается направление против часовой стрелки.

Числа $\rho $ и $\phi $ называются полярными координатами точки $M\left(\rho ,\; \phi \right)$. При этом полярный радиус $\rho \ge 0$, а полярный угол $0\le \phi

Связь между прямоугольными и полярными координатами

Между полярными и декартовыми прямоугольными координатами точки $M$ можно установить связь. Для этого нужно совместить полюс и полярную ось с началом и положительным направлением оси $Ox$ прямоугольной системы координат.

Из треугольника $OMM_ <1>$ получаем следующие формулы связи:

  1. для заданных полярных координат $\rho $ и $\phi $ декартовы координаты $x$ и $y$ вычисляются по формулам $x=\rho \cdot \cos \phi $ и $y=\rho \cdot \sin \phi $;
  2. для заданных декартовых координат $x$ и $y$ полярные координаты $\rho $ и $\phi $ вычисляются по формулам $\rho =\sqrt +y^ <2>> $ и $\phi =Arctg\frac$.

Обратная тригонометрическая функция $\phi =Arctg\frac $ многозначна, поэтому при практических вычислениях пользуются главным значением $ — \frac <\pi >

Общая формула имеет вид:

\[\phi =\left\<\begin \; \; при \; x>0,\; y>0> \\ <\pi +arctg\frac \; \; при \; x0,\; y0> \\ <\frac<3\cdot \pi > <2>\; при \; x=0,\; yПри $x=0$ и $y=0$ имеем $\rho =\sqrt +y^ <2>> =0$. В этом случае значение угла $\phi $ можно взять произвольно.

Некоторые важнейшие кривые

  1. Циссоида. Уравнения: $y^ <2>=\frac >$ — в декартовых прямоугольных координатах; $\rho =\frac \phi ><\cos \phi >$ — в полярных координатах.
  2. Строфоида. Уравнения: $y^ <2>=x^ <2>\cdot \frac$ — в декартовых прямоугольных координатах; $\rho =-a\cdot \frac<\cos \left(2\cdot \phi \right)><\cos \phi >$ — в полярных координатах.
  3. Кардиоида. Уравнения: $\left(x^ <2>+y^ <2>\right)^ <2>-2\cdot a\cdot x\cdot \left(x^ <2>+y^ <2>\right)=a^ <2>\cdot y^ <2>$ — в декартовых прямоугольных координатах; $\rho =a\cdot \left(1+\cos \phi \right)$ — в полярных координатах.

  • Лемниската. Уравнения: $\left(x^ <2>+y^ <2>\right)^ <2>-2\cdot a^ <2>\cdot \left(x^ <2>-y^ <2>\right)=0$ — в декартовых прямоугольных координатах; $\rho =a\cdot \sqrt <2\cdot \cos \left(2\cdot \phi \right)>$ — в полярных координатах.
  • При построении графиков в полярных координатах с помощью средств MS Excel имеются некоторые особенности.

    График в MS Excel может быть построен, если функция однозначна и задана в декартовой прямоугольной системе координат.

    Для построения графика циссоиды $y^ <2>=\frac > $ следует использовать уравнения $y=+\sqrt <\frac> > $ и $y=-\sqrt <\frac> > $.

    При построении графика строфоиды поступаем аналогично.

    Для построения графиков кардиоиды и лемнискаты такой прием не подходит, так как разрешить их уравнения в декартовой прямоугольной системе координат относительно $y$ невозможно.

    Поэтому рекомендуется использовать уравнения этих кривых в полярных координатах по следующей схеме: задать значение угла $\phi $ в градусах (так удобнее), перевести это значение в радианы, в соответствии с уравнением кривой вычислить значение $\rho $, вычислить декартовы координаты $x$ и $y$ по формулам $x=\rho \cdot \cos \phi $ и $y=\rho \cdot \sin \phi $. Теперь можно строить график обычным образом.


    источники:

    http://spravochnick.ru/matematika/chislo_peremennaya_funkciya/polyarnaya_sistema_koordinat/