Как получить из чего то бутанол уравнения

Бутанол-1: химические свойства и получение

Бутанол-1, бутиловый спирт CH3CH2CH2OH – органическое вещество, молекула которого содержит, помимо углеводородной цепи, одну группу ОН.

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

Строение бутанола-1

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому бутанол-1 – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Бутанол-1 смешивается с водой в любых соотношениях.

Изомерия бутанола-1

Структурная изомерия

Для бутанола-1 характерна структурная изомерия – изомерия положения гидроксильной группы, изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С4Н10О бутиловый спирт СН3–CH2–CH2–CH2–OH, метилпропиловый эфир CH3–O–CH2–CH2–CH3, метилизопропиловый эфир CH3–O–CH(CH3)2, диэтиловый эфир CH3–CH2–O–CH2–CH3
Бутиловый спиртМетилпропиловый эфир
СН3–CH2–CH2–CH2–OH CH3–O–CH2–CH2–CH3

Изомеры с различным положением группы ОН отличаются положением гидроксильной группы в молекуле. Такая изомерия характерна для спиртов, которые содержат три или больше атомов углерода.

Например. Бутанол-1 и бутанол-2
Бутанол-1Бутанол-2
СН3–CH2–CH2–CH2–OH СН3–CH(OH) –CH 2 –CH 3

Изомеры углеродного скелета отличаются положением строением углеродного скелета. Такая изомерия характерна для спиртов, которые содержат 4 или больше атомов углерода.

Например. Бутанол-1 и изобутанол-2
Бутанол-1Изобутанол
СН3–CH2–CH2–CH2–OH СН3–CH(CH3) –CH 2 –OH

Химические свойства бутанола-1

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н + соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:
  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация

1. Кислотные свойства бутанола-1

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому бутанол-1 не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Бутанол-1 взаимодействует с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, бутанол-1 взаимодействует с калием с образованием бутилата калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, бутилат калия разлагается водой:

СН3–CH2CH2CH2–OK + H2O СН3–CH2CH2CH2–OH + KOH

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, бутанол-1 реагирует с бромоводородом.

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии бутанола-1 с аммиаком образуется бутиламин.

2.3. Этерификация (образование сложных эфиров)

Cпирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, бутанол-1 реагирует с уксусной кислотой с образованием бутилацетата (бутилового эфира уксусной кислоты):

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии бутанола-1 с азотной кислотой образуется бутилнитрат.

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из бутанола-1 под действием концентрированной серной кислоты при высокой температуре образуется бутен-1:

3.2. Межмолекулярная дегидратация

При низкой температуре происходит межмолекулярная дегидратация: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации бутанола-1 при низкой температуре образуется дибутиловый эфир:

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов.

Например, бутанол-1 окисляется оксидом меди до бутаналя.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов.

Например, при окислении бутанола-1 образуется бутаналь

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.
Например, при взаимодействии бутанола-1 с перманганатом калия в серной кислоте образуется бутановая кислота

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания бутанола-1:

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании первичных спиртов образуются альдегиды.

Например, при дегидрировании бутанола-1 образуется бутаналь.

Получение бутанола-1

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании 1-хлорбутана с водным раствором гидроксида натрия образуется бутанол-1

2. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Бутиловые спирты

Бути́ловые спирты́ (бутанолы) — это алифатические спирты, с брутто-формулой С4Н9ОН, и молекулярной массой 74,12. Существуют н-бутиловый спирт (1-бутанол, пропилкарбинол) — CH3CH2CH2CH2OH, с температурой кипения 117,4°С и плотностью 0,810 г/куб.см; втор-бутиловый спирт (2-бутанол, метилэтилкарбинол) — C2H5CH(OH)CH3, с температурой кипения 99,5°С, и плотностью 0,806 г/куб.см; изобутиловый спирт (изобутанол, 2-метил-1-пропанол, изопропилкарбинол) — (CH3)2CHCH2OH, с температурой кипения 108, 1 °С и плотностью 0,806 г/куб.см; трет-бутиловый спирт (трет-бутанол, 2-метил-2-пропанол, триметилкарбинол) — (CH3)3COH, с температурой плавления 25,5°С, температурой кипения 82,5°С и плотностью 0,789 (все плотности даны при температуре 20°С). 1-бутанол, 2-бутанол и изобутанол — бесцветные жидкости с характерным спиртовым запахом, трет-бутанол же является твердым веществом (бесцветные ромбические кристаллы).

По химическим свойствам бутанолы — типичные алифатические спирты: они этерифицируются кислотами, при взаимодействии с альдегидами (кетонами) образуют ацетали (кетали), дегидратируются в простые эфиры и олефины, окисляются (кроме трет-бутанола) в карбонильные соединения, а также при взаимодействии с аммиаком образуют моно-, ди- и трибутиламины.

Основные методы получения бутиловых спиртов

В основном промышленным методом получения н-бутанола является оксосинтез из пропилена с использованием никель-кобальтовых катализаторов. Н-бутиловый спирт получают также из ацетальдегида через ацетальдоль и кротоновый альдегид, который гидрируют на медных, меднохромовых или никелевых катализаторах, или ацетоно-бутиловым брожением пищевого сырья.

Изобутиловый спирт содержится в значительном количестве в сивушных маслах, откуда он выделяется фракционной перегонкой. Его получают также оксосинтезом (вместе с н-бутиловым спиртом) и из смеси оксида углерода и водорода по схеме, аналогичной синтезу метанола, но при других параметрах.

Втор-бутиловый спирт получают взаимодействием 70-85% серной кислоты с бутенами, содержащимися во фракциях С4 термического и каталитического крекинга нефтепродуктов, пиролиза жидких углеводородов и одностадийного дегидрирования бутана. Из бутенов предварительно удаляют изобутен и бутадиен. Образующуюся втор-бутилсерную кислоту гидролизуют. Его также можно синтезировать эпоксидированием бутенов органическими гидропероксидами с последующим гидрированием полученного эпоксида в спирт или прямой гидратацией бутенов.

Трет-бутиловый спирт синтезируют взаимодействием 40-65% серной кислоты с изобутеном, содержащимся во фракциях С4, так же, как втор-бутиловый спирт, и прямой гидратацией изобутена в присутствии сульфокатионитов.

Н-бутиловый спирт, изобутиловый спирт и их смеси применяют как растворители в лакокрасочной промышленности, модификаторы мочевино- и меламино-формальдегидных смол, для получения пластификаторов. Кроме того, н-бутанол служит сырьем для синтеза бутилацетата, бутилакрилата и эфиров с гликолями, а изобутанол — для получения изобутилацетата и изобутилксантогената (на основе изобутилксантогената калия получают кристаллические хорошо растворимые присадки к смазочным маслам), пестицидов, душистых веществ, пищевых эссенций, лекарственных средств.

Втор-бутиловый спирт — промежуточный продукт в производстве метилэтилкетона; он также служит сырьем для синтеза втор-бутилацетата; растворителем; алкилирующим и дегидратирующим агентом; высокооктановым компонентом моторных топлив (октановое число 110), обладающим в смеси с метилтрет-бутиловым эфиром синергическим эффектом; стабилизатором смесей бензина с метанолом (так называемых бензометанольных смесей); компонентом тормозных жидкостей.

Трет-бутиловый спирт — промежуточный продукт в производстве изобутена высокой степени чистоты из газов нефтепереработки; алкилирующий агент; сырье для производства трет-бутилгидропероксида, искусственного мускуса; растворитель; антисептик; денатурирующий агент для этанола-сырца.

Назначение установки получения спиртов методом оксосинтеза

Установка предназначена для получения альдегидов или соответствующих спиртов, включающего кроме собственно гидроформилирования также и стадии получения катализатора, выделения его из продуктов реакции, разделения продуктов синтеза и гидрирования альдегидов в соответствующие спирты.

Общие сведения о процессе оксосинтеза

Реакция оксосинтеза была открыта в Германии в 1938 году Роеленом из фирмы «Ruhrchemie». Роелен изучал влияние небольших добавок олефинов на процесс Фишера-Тропша в присутствии гетерогенного кобальтового катализатора. Он обнаружил в реакционной среде примеси альдегидов. Позднее Эдкинс назвал эту реакцию – реакцией гидроформилирвания.

Термином же оксосинтез в научной литературе стали пользоваться для определения технологического процесса получения альдегидов или соответствующих спиртов, включающего кроме собственно гидроформилирования также и стадии получения катализатора, выделения его из продуктов реакции, разделения продуктов синтеза и гидрирования альдегидов в соответствющие спирты.

Таким образом, термином оксосинтез обозначается не конкретная реакция, а сложный технологический комплекс.

В той или иной степени реакцию гидроформилирования катализируют многие металлы: железо, марганец, рутений, кобальт, родий. Классический комплекс – гидрокарбонил кобальта HCo(CO)4.

Основные стадии процесса «оксосинтеза»

Процесс получения масляных альдегидов и бутиловых спиртов осуществляется с использованием кобальтсодержащего катализатора. Кобальт вводится в систему в виде мало летучей термоустойчивой соли 2-этилгексаната кобальта, хорошо растворимой в органическом продукте гидроформилирования.

Весь процесс получения альдегидов и спиртов методом оксосинтеза разделяется на следующие основные стадии:

Стадия карбонилообразования заключается в получении гидрокарбонила кобальта (катализатора реакции гидроформилирования) из его органической соли взаимодействием синтез-газа, состоящего из окиси углерода и водорода, с 2-этилгексанатом кобальта, растворенным в циркулирующем по системе кубовом остатке, по реакции:

и далее идет равновесный переход дикобальтоктакарбонила в гидрокарбонил по реакции:

Свободная 2-этилгексановая кислота, выделившаяся при реакции, остается в кубовом остатке и проходит затем по всей системе до стадии окислительной декобальтизации.

Реакцию карбонилообразования проводят при температуре 140-175°C и давлении 240-305 кгс/см². Реакция протекает с незначительным выделением тепла. Эти условия обеспечивают образование и сохранение карбонилов кобальта. При увеличении температуры скорость реакции возрастает, а при температуре выше 180°С начинается термическое разложение образующихся карбонилов кобальта.

Стадия гидроформилирования заключается в получении масляных альдегидов взаимодействием пропилена с синтез-газом, состоящим из окиси углерода и водорода, в присутствии гидрокарбонила кобальта по реакции:

Реакцию гидроформилирования проводят при температуре 125-145°C и давлении 230-305 кгс/см². Реакция идет с выделением тепла, равным 30 ккал/моль пропилена.

Стадия гидроформилирования осуществляется в двух последовательно соединенных вертикальных реакторах. Съем тепла реакции производится с помощью встроенных теплоснимающих элементов (трубок Фильда) путем циркуляции через них водяного конденсата. По способу съема тепла реакторы гидроформилирования делятся на: реакторы с внутренним теплосъемом, реакторы с внешним теплосъемом, реакторы комбинированного типа. В реакторах с внутренним теплосъемом тепло реакции поглощается за счет подачи холодного сырья или продукта гидроформилирования прямо в зону реакции. Все компоненты подадаются в реактор снизу съема тепла осуществляется позонным впрыскиванием охлажденных продуктов гидроформилирования. В таких аппаратах предусматривается также циркуляция газового потока, что улучшает теплообмен между реакционной смесью и впрыскиваемым холодным продуктом. Достоинством таких аппаратов является простота конструкции, недостатоком – повышенный выход побочных продуктов. В Германии и России используются реакторы колонного типа со встроенными теплоснимающими элементами типа трубок Фильда. В качестве охлаждающей жидкости используется деминерализованная вода. Комбинированный реактор состоит из двух зон : одна зона работает как аппарат идеального перемешивания, а вторая как аппарат идеального вытеснения. В зоне идеального смешения осуществляется «первая часть реакции» гидроформилирования. В этой зоне процесс ведется до степени превращения олефина 50-70%. Затем реакционная смесь поступает в зону идеального вытеснения. Здесь реакция осуществляется наиболее рационально, с минимальным выходом побочных продуктов. Реакционный узел комбинированного типа может представлять собой как два отдельных, последовательно соединенных реактора, так и один секционный аппарат.

Ниже представлены схемы реакторов с внутренним теплосъемом и комбинированного типа.

Скорость реакции гидроформилирования пропорциональна концентрации пропилена и катализатора (гидрокарбонила кобальта), увеличивается с повышением давления водорода и снижается с повышением давления окиси углерода. Поскольку давление в процессе гидроформилирования поддерживается примерно на одном уровне, взаимное влияние на процесс давлений водорода и окиси углерода будет осуществляться через изменение их концентраций в синтез-газе, а точнее, через изменение их соотношения. Скорость реакции гидроформилирования растет также с повышением температуры проведения процесса.

Конечной целью проведения стадии гидроформилирования является более полная конверсия поступившего пропилена с минимальным выходом побочных продуктов и с максимальным выходом конечных основных продуктов (нормального и изомасляного альдегидов), при максимальном соотношении их в сторону нормального масляного альдегида, и при исключении как перерасхода синтез-газа, так и потерь кобальта.

Исходные компоненты реакции гидроформилирования подаются как в жидком виде (кубовый остаток, пропилен), так и в газообразном виде (синтез-газ), поэтому распределение пропилена между газовой и жидкой фазами в значительной степени влияет на скорость и степень превращения пропилена в целевые продукты. Скорость реакции в газовой фазе примерно на два порядка ниже, чем в жидкой, а при снижении скорости реакции требуется большее время контакта для обеспечения требуемой конверсии.

На первом этапе стадии гидроформилирования требуется постоянно высокая концентрация гидрокарбонила кобальта и равномерное распределение реагентов во всем реакционном объеме. Эти условия обеспечиваются конструкцией первого по ходу реактора гидроформилирования — реактора «идеального смешения», что позволяет держать достаточно высокую скорость основной реакции и необходимую степень конверсии пропилена в процессе гидроформилирования.

Так как почти все реакции образования побочных продуктов являются последовательными по отношению к основной реакции гидроформилирования, поэтому на втором этапе, где глубина превращения пропилена максимальная, требуемые условия проведения реакции обеспечиваются конструкцией второго по ходу реактора гидроформилирования — реактора «идеального вытеснения».

Степень превращения пропилена, особенно близкая к 100%, значительным образом влияет на соотношение выхода основных и побочных продуктов. Поэтому очень важно держать ее в оптимальном интервале 92-95%. Степень превращения определяется по содержанию пропилена в сбросном газе. Снижение содержания пропилена в сдувке ниже 5% об. приводит к значительному увеличению выхода побочных продуктов. Повышение содержания пропилена в сдувке говорит о снижении конверсии, и при содержании более 10% об. приводит к его потере.

Подача кубового остатка в качестве растворителя 2-этилгексаната кобальта влияет на суммарную скорость процесса гидроформилирования как своим составом, так и изменением фазового распределения в системе (увеличивает объем жидкой фазы и соответственно пропилена в ней).

Увеличение расхода подаваемого кубового остатка увеличивает степень конверсии пропилена через увеличение концентрации кобальта в системе и через увеличение объема жидкой фазы. Увеличивается при этом и выход побочных продуктов. Поддерживая расход кубового остатка в оптимальном интервале (1,4-3,0 м3/ч), в зависимости от нагрузки по пропилену, требуемую концентрацию кобальта в системе (0,07-0,15% масс. в пересчете на металлический) поддерживают путем изменения расхода подпитки свежего раствора 2-этилгексаната кобальта в подаваемый кубовый остаток.

Процесс приготовление раствора солей кобальта

С целью поддержания требуемой концентрации кобальта осуществляют процесс приготовления раствора солей кобальта высших органических кислот, который состоит из двух стадий.

На первой стадии производится экстракция кобальта из кубового остатка, выводимого из процесса оксосинтеза, водным раствором уксусной кислоты. Кобальт в кубовом остатке находится в виде солей высших органических кислот С8 (2-этилгексановой и 2-этилгексеновой) и бутиратов.

В процессе регенерации кобальта из кубового остатка водным раствором уксусной кислоты соли кобальта кислот С8 и С4 в результате обменной реакции превращаются в ацетат кобальта, переходящий в водную фазу, с выделением высших органических кислот и масляной кислоты, которые выводятся с органической фазой, содержащей кубовый остаток.

Водный раствор ацетата кобальта используется для приготовления солей кобальта высших органических кислот.

С целью восполнения потерь кобальта в процессе гидроформилирования и ректификации масляных альдегидов используют сухой ацетат кобальта или карбонат кобальта.

На второй стадии осуществляется получение раствора солей кобальта высших органических кислот взаимодействием раствора ацетата кобальта с 2-этилгексановой кислотой.

Реакция протекает при температуре 180-200°C, давлении до 1,3 кгс/см² в присутствии кубового остатка.

Уксусная кислота при этих условиях отгоняется и равновесие реакции смещается вправо. Кубовый остаток служит в качестве растворителя образовавшихся солей кобальта высших органических кислот. Отогнанный раствор уксусной кислоты вновь используется для экстракции кобальта из кубового остатка.

Важной характеристикой процесса гидроформилирования является соотношение выхода нормального и изомасляного альдегидов.

С повышением температуры увеличивается доля изомасляного альдегида. Увеличение давления в системе в условиях процесса (240-305 кгс/см²) повышает долю нормального масляного альдегида, вследствие увеличения парциального давления как окиси углерода, так и водорода, содержащихся в синтез-газе.

Как исходное сырье, так и синтез-газ содержат различные примеси, влияющие на реакцию гидроформилирования. Основными примесями, которые может принести в процесс пропилен, являются: диеновые, ацетиленовые, сернистые и перекисные соединения. Поэтому содержание их в пропилене постоянно контролируется и строго регламентируется.

На стадии гидроформилирования может использоваться, как чистый пропилен, так и пропан-пропиленовая фракция (ППФ), с содержанием пропилена в ней не менее 90% масс. Пропан, содержащийся в этом сырье в количестве 3-10% масс., является инертным разбавителем и занимает определенную часть реакционного объема и оказывает влияние на межфазное распределение пропилена в процессе, а, следовательно, и на скорость основной реакции, и на степень конверсии.

Влияние примесей, приносимых в процесс с синтез-газом, ограничивается строгой регламентацией содержания их в поступающем синтез-газе. Основная доля всех примесей в газе приходится на метан. Увеличение содержания метана оказывает на процесс такое же влияние, как и пропан при использовании в качестве сырья пропан-пропиленовой фракции.

Стадия окислительной декобальтизации заключается в переводе карбонилов кобальта, содержащихся в продукте гидроформилирования, в 2-этилгексанат кобальта, путем обработки продукта гидроформилирования кислородом воздуха при температуре 40-55°C и давлении 4,0-4,5 кгс/см² при избытке 2-этилгексановой кислоты. В продукте гидроформилирования кобальт находится в основном в виде двух равновесных форм — дикобальтоктакарбонила и гидрокарбонила кобальта:

При этом имеет место разложение карбонилов кобальта по реакциям:

Образующаяся малолетучая, термически устойчивая соль кобальта (2-этилгексанат кобальта), хорошо растворимая в продукте гидроформилирования (сырых альдегидах), при последующей ректификации продукта остается в кубовом остатке и возвращается на стадию гидроформилирования, карбонилообразования, где вновь переводится в карбонилы кобальта.

Заниженная подача воздуха в реактор по отношению к расходу продуктов гидроформилирования, также поступающих в реактор, приводит к неполному переводу карбонилов кобальта в 2-этилгексанат кобальта. В результате чего в дальнейшем происходит термическое разложение карбонилов кобальта в процессе ректификации, выпадение металлического кобальта, забивка трубопроводов и аппаратов.

Завышенная подача воздуха в реактор приводит к повышенному окислению альдегидов, содержащихся в продукте гидроформилирования, до масляной кислоты и образованию солей кобальта масляной кислоты (бутиратов кобальта) по реакции:

Образовавшийся бутират кобальта растворяется в воде, присутствующей в продукте гидроформилирования, что приводит к дальнейшей потере кобальта в процессе ректификации, при подрезке этой воды. Поэтому количество воздуха, подаваемого в реактор, по отношению к продукту гидроформилирования, поступающему из отделения гидроформилирования, должно составлять 2,3 — 3,5 нм3 на 1 м3 продукта, т.е. соотношение расходов должно быть в интервале 2,3 — 3,5. 2-этилгексановая кислота, содержащаяся в поступающем продукте, взаимодействует в присутствии кислорода воздуха с карбонилами кобальта с образованием 2-этилгексаната кобальта, хорошо растворяющимся в продукте гидроформилирования. Для восполнения потерь 2-этилгексановой кислоты, в процессе ее многократной циркуляции в составе кубового остатка, и для поддержания избытка ее, с целью смещения реакции в сторону более полного перевода карбонилов кобальта в 2-этилгексанат кобальта, производится постоянная подача 2-этилгексановой кислоты в реактор декобальтизации.

Количество органической кислоты, подаваемой на окислительную декобальтизацию, устанавливается ориентировочно 5 литров кислоты на 1 м3 пропилена, поступающего на стадию гидроформилирования.

Зависимость необходимого расхода кислоты, подаваемой в реактор, от расхода пропилена (ППФ), поступающего на гидроформилирование представлена в таблице.


источники:

http://acetyl.ru/o/a41i.php

http://proplast.ru/articles/butilovyie-spirtyi/